مدل‌سازی سینتیکی و رویکرد شبکه عصبی مصنوعی فرایند استخراج به روش ‌حرارت‌دهی مقاومتی عصاره غازیاغی

نویسندگان
1 دانشجوی دکتری علوم ومهندسی صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 استادیارگروه علوم و مهندسی صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
4 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشگاه آزاد واحد تبریز
چکیده
تجزیه‌وتحلیل مدل‌سازی استخراج از ترکیبات طبیعی در کاربرد صنعتی ضروری است. در مقاله حاضر، استخراج عصاره از گیاه غازیاغیFalcaria vulgaris) ) به روش حرارت‌دهی مقاومتی مورد بررسی قرار گرفت. این مطالعه به منظور بیان تأثیر برخی از متغیرهای مشخص (نظیر گرادیان ولتاژ، نسبت اتانول به آب، زمان و دمای استخراج) بر بازده استخراج و محتوای فنلی کل (TPC) انجام شد. مدل‌های سینتیک (مدل‌های مرتبه اول، مرتبه دوم و پلگ) و شبکه عصبی مصنوعی برای مدل‌سازی فرآیند استخراج به به روش حرارت‌دهی مقاومتی استفاده شد. مطالعه سینتیکی نقش بسیار مهمی در ارزیابی فرآیند استخراج بازی می‌کند، زیرا امکان تخمین مقرون‌به‌صرفه بودن فرآیند از نظر صرفه‌جویی در زمان، هزینه و انرژی را فراهم می‌نماید. نتایج نشان داد که مدل‌های سینتیکی مرتبه دوم و پلگ توانستند به‌ترتیب مقادیر محتوای فنل کل عصاره و راندمان استخراج را با موفقیت پیش‌بینی نمایند. ضریب همبستگی بین بازده استخراج تجربی به‌دست‌آمده و محتوای فنلی کل و مقادیر پیش‌بینی‌شده توسط شبکه عصبی مصنوعی (2-16-4) برای آموزش برابر 995/0، برای اعتبارسنجی برابر 963/0 و برای آزمایش برابر 979/0 بود، که نشان‌دهنده توانایی پیش‌بینی خوب مدل است. مدل شبکه عصبی مصنوعی کارایی پیش‌بینی بالاتری نسبت به مدل‌های جنبشی داشت. شبکه عصبی مصنوعی می‌تواند فرآیند را با به‌طور مطمئن‌تری نسبت به مدل‌های سینتیکی با قابلیت‌های پیش‌بینی و تخمین بهتری مدل کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Kinetic modeling and artificial neural network approach for the modelling of Ohmic-assisted extraction of Falcaria vulgaris extract

نویسندگان English

Zeinab Hassanloofard 1
Mehdi Gharekhani 2
Mohsen Zandi 3
Leila Roufegarinejad 2
Ali Ganjloo 4
1 Ph.D. student, Department Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2 Assistant professor, Department Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
3 Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 4537-38791 Iran
4 دانشیارگروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
چکیده English

Analysis of the extraction modelling for natural compounds is essential for industrial application. In the present paper, ohmic-assisted extraction was investigated for the extraction of Falcaria vulgaris extract. This study was performed in order to express the effect of some pecific parameters (as: voltage gradiant, ethanol to water ratio, extraction time and temperature) on the extraction yield and total phenolic content (TPC). Kinetics models (first-order, second's-order and pelleg models) and artificial neural network were used for modeling ohmic-assisted extraction process. Kinetic study plays a very important role in evaluating the extraction process because it allows estimation of the cost-effectiveness of the process in saving time, money and energy. The results showed that the second-order and plleg's kinetic models respectively, were successfully predicted the value of the total phenol content of the extract and extraction yield in all experiments. The correlation coefficient between experimentally obtained extraction yield and total phenolic content and values predicted by artificial neural network (4-16-2) were 0.995 for training, 0.963 for validation, and 0.979 for testing, indicating the good predictive ability of the model. The artificial neural network model had a higher prediction efficiency than the kinetic models. Artificial neural network can reliably model the process with better predictive and estimation capabilities than the kinetic’s models.

کلیدواژه‌ها English

Falcaria vulgaris
Extraction
Ohmic heating
artificial neural network
kinetic’s model
1. González-Centeno, M., et al., 2015. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics sonochemistry, 22: p. 506-514.
2. Khazaei, M. and H. Salehi, 2006.. Protective effect of of FALCARIA Vulgaris extract on ethanol induced gastric ulcer in rat.
3. Zangeneh, M.M., et al., 2018. Hepatoprotective and hematoprotective effects of Falcaria vulgaris aqueous extract against CCl4-induced hepatic injury in mice. Comparative Clinical Pathology,. 27(5): p. 1359-1365.
4. Zangeneh, M.M., et al., 2018. Antidiabetic, hematoprotective and nephroprotective effects of the aqueous extract of Falcaria vulgaris in diabetic male mice. Archives of Biological Sciences, 70(4): p. 655-664.
5. Jaberian, H., K. Piri, and J. Nazari, 2013. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food chemistry, 136(1): p. 237-244.
6. Goorani, S., et al., 2019. Assessment of antioxidant and cutaneous wound healing effects of Falcaria vulgaris aqueous extract in Wistar male rats. Comparative Clinical Pathology, 28(2): p. 435-445.
7. Monfared, K.E., Z. Rafiee, and S. Jafari, 2012. Phenolic content and antioxidant activity of Falcaria vulgaris extracts. Analytical Chemistry Letters, 2(3): p. 159-170.
8. Jalili, C., et al., 2018. Effect of Falcaria vulgaris extracts on sperm parameters in diabetic rats. Andrologia, 50(10): p. e13130.
9. Kaderides, K., et al., 2019. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137: p. 1-11.
10. Hashemi, S.M.B., et al ,2019 .Voltage and NaCl concentration on extraction of essential oil from Vitex pseudonegundo using ohmic-hydrodistillation. Industrial Crops and Products, 141: p. 111734.
11. Roohi, R. and S.M.B. Hashemi, 2019. Experimental and computational fluid dynamics modeling of Satureja khuzestanica essential oil extraction during ohmic‐hydrodistillation. Journal of Food Process Engineering, 42: p. e13083.
12. Gavahian, M., Y.-T. Lee, and Y.-H. Chu, 2018 Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science & Emerging Technologies, 48: p. 33-41.
13. Gavahian, M. and A. Farahnaky, 2018. Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology, 72: p. 153-161.
14. Mojtahed Zadeh Asl, R., et al., 2018. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Research International, 107: p. 462-469.
15. Gavahian, M. and Y.-H. Chu, 2018. Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science & Emerging Technologies, 50: p. 34-41.
16. Jafari, R., M. Zandi, and A. Ganjloo, 2022. Effect of ultrasound and microwave pretreatments on extraction of anise (Pimpinella anisum L.) seed essential oil by ohmic-assisted hydrodistillation. Journal of Applied Research on Medicinal and Aromatic Plants, p. 100418.
17. Marcos Camargo Knirscha, et al., 2018. Ohmic heating.
18. Zandi, M., A. Ganjloo, and M. Bimakr, 2022. Kinetic modeling and optimization of musk willow (Salix aegyptiaca L.) essential oil extraction process of using ultrasound assisted hydrodistillation. Journal of food science and technology (Iran), 18(121): p. 93-106.
19. Zandi, M., A. Ganjloo, and M. Bimakr, 2021. Ohmic assisted hydrodistillation extraction of musk willow (Salix aegyptiaca L.) essential oil and artificial neural network modeling of extraction kinetic. Journal of food science and technology (Iran), 18(120): p. 173-186.
20. Da Porto, C. and A. Natolino, 2018. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258: p. 137-143.
21. Karami, P., M. Zandi, and A. Ganjloo, 2022. Mathematical, fuzzy logic and artificial neural network modeling of extraction kinetics of essential oil from aerial parts of yarrow (Achillea millefolium L.) using ohmic-assisted hydrodistillation. Journal of food science and technology (Iran), 19(123): p. 341-354.
22. Qu, W., Z. Pan, and H. Ma, 2010. Extraction modeling and activities of antioxidants from pomegranate marc. Journal of food engineering, 99(1): p. 16-23.
23. Lazar, L., et al., 2016. Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrasonics sonochemistry, 32: p. 191-197.
24. Stankovic, M., et al., 1994. Kinetics of extraction of resinoids from overground parts of sweet clover (Melilotus officinalis L.). JOURNAL-SERBIAN CHEMICAL SOCIETY, 59: p. 735-735.
25. Pekic, B., et al., 1988. Investigation of extraction kinetics of glycoside from leaves of Digitalis lanata Ehrh. Pharmazeutische Industrie, 50(8): p. 984-986.
26. Cacace, J. and G. Mazza, 2003. Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4): p. 379-389.
27. Ponomaryov, V., 1976. Medicinal herbs extraction. Medicina, Moscow,.
28. Peleg, M., 1988. An empirical model for the description of moisture sorption curves. Journal of Food science, 53(4): p. 1216-1217.
29. Ciric, A., et al., 2020. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food and Chemical Toxicology, 135: p. 110976.
30. Simić, V.M., et al., 2016. Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Separation and Purification Technology, 160: p. 89-97.
31. Cheok, C.Y., et al., 2012. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Industrial crops and products, 40: p. 247-253.
32. Goula, A.M., 2013. Ultrasound-assisted extraction of pomegranate seed oil–Kinetic modeling. Journal of Food Engineering, 117(4): p. 492-498.
33. Sinha, K., et al., 2013. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products, 41: p. 165-171.
34. Patil, D.M. and K.G. 2017. Akamanchi, Microwave assisted process intensification and kinetic modelling: Extraction of camptothecin from Nothapodytes nimmoniana plant. Industrial crops and products, 98: p. 60-67.
35. Shirsath, S., et al., 2017. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochemistry, 38: p. 437-445.