[1] Z. Song, Y. Zhong, W. Tian, C. Zhang, A.R. Hansen, A. Blennow, W. Liang, D. Guo, Structural and functional characterizations of α-amylase-treated porous popcorn starch, Food Hydrocoll. 108 (2020) 105606.
[2] S.K. Sudan, N. Kumar, I. Kaur, G. Sahni, Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs, India, Int. J. Biol. Macromol. 117 (2018) 831–839.
[3] W. Yang, X. Kong, Y. Zheng, W. Sun, S. Chen, D. Liu, H. Zhang, H. Fang, J. Tian, X. Ye, Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure, Ultrason. Sonochem. 59 (2019) 104709.
[4] S. Shabana, R. Prasansha, I. Kalinina, I. Potoroko, U. Bagale, S.H. Shirish, Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles, Ultrason. Sonochem. 51 (2019) 444–450.
[5] G.L. Peres, D.C. Leite, N.P. da Silveira, Ultrasound effect on molecular weight reduction of amylopectin, Starch‐Stärke. 67 (2015) 407–414.
[6] Y. Iida, T. Tuziuti, K. Yasui, A. Towata, T. Kozuka, Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization, Innov. Food Sci. Emerg. Technol. 9 (2008) 140–146.
[7] J. Kim, D. Park, S. Lim, Fragmentation of waxy rice starch granules by enzymatic hydrolysis, Cereal Chem. 85 (2008) 182–187.
[8] T. Keeratiburana, A.R. Hansen, S. Soontaranon, A. Blennow, S. Tongta, Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase, Carbohydr. Polym. 230 (2020) 115611.
[9] Guo, Z., Zeng, S., Zhang, Y., Lu, X., Tian, Y., & Zheng, B. (2015). The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocolloids, 44, 285-291.
[10] Błaszczak, W., Valverde, S., & Fornal, J. (2005). Effect of high pressure on the structure of potato starch. Carbohydrate Polymers, 59(3), 377-383.
[11] Ahmed, J., Thomas, L., Taher, A., & Joseph, A. (2016). Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydrate polymers, 152, 639-647.
[12] Pourmohammadi, K., & Abedi, E. (2020). The effect of pre and post-ultrasonication on the aggregation structure and physicochemical characteristics of tapioca starch containing sucrose, isomalt and maltodextrin. International Journal of Biological Macromolecules, 163, 485–496.
[13] Li, G., & Zhu, F. (2018). Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry, 241, 380-386.
[14] F. Villas-Boas, C.M.L. Franco, Effect of bacterial β-amylase and fungal α-amylase on the digestibility and structural characteristics of potato and arrowroot starches, Food Hydrocoll. 52 (2016) 795–803.
[15] Abedi, E., & Pourmohammadi, K. (2020). Aggregation behaviors of sonicated tapioca starch with various strengths of Hofmeister salts under pre-and post-ultrasonic treatment. Food Hydrocolloids, 105, Article 105826.
[16] Balakrishna, A. K., Wazed, M. A., & Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25(10), 2369.
[17] Katopo, H., Song, Y., & Jane, J. L. (2002). Effect and mechanism of ultra high hydrostatic pressure on the structure and properties of starches. Carbohydrate Polymers, 47(3), 233-244.
[18] Szwengiel, A., Lewandowicz, G., Górecki, A. R., & Błaszczak, W. (2018). The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content. Food chemistry, 240, 51-58.