مدلسازی پاستوریزاسیون درون پوسته تخم مرغ با روش دینامیک سیالات محاسباتی

نویسنده
استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران. تلفن 07154344445
چکیده
آلودگی تخم مرغ به سالمونلا انتریتیدیس یکی از مهم ترین علل گاستروانتریت ناشی از غذا در سراسر جهان است و روش رایجی که میتوان برای غیرفعال‌سازی این باکتری استفاده کرد، پاستوریزاسیون است. در این مطالعه، پاستوریزاسیون نمونه تخم مرغ با استفاده از شیوه CFD به صورت ریاضی مدل‌سازی شد. نتایج با داده‌های تجربی مقایسه شد و مشخص شد که این مدل می‌تواند دمای تخم‌مرغ را در حین پاستوریزه کردن به طور منطقی پیش‌بینی کند (R2>0.98). این مدل نشان داد که به منظور پیش‌بینی تغییرات دمایی کندترین ناحیه گرمایش (SHZ) با دقت بالاتر، لازم است که تأثیر جریان‌های همرفت طبیعی ناشی از دیواره‌های داغ پوسته تخم مرغ در فرآیند پاستوریزه سازی در نظر گرفته شود. نتایج نشان داد که SHZ در طول پاستوریزاسیون به حرکت خود ادامه می‌دهد و در نهایت، بعد از 300 ثانیه گرمایش در ناحیه‌ای که حدود 25 % ارتفاع تخم مرغ از پایین است، باقی میماند. این نتایج همچنین نشان می‌دهد که زمان لازم برای کاهش 5D جمعیت سالمونلا انتریتیدیس در نقطه سرد تخم مرغ تقریباً 28 دقیقه است. این مدل می‌تواند به عنوان یک ابزار مهم در درک بهتر فرایند پاستوریزاسیون، انتخاب بهترین پارامترهای فرآیند و تسهیل بهینه سازی فرآیند پاستوریزاسیون تخم مرغ به سمت اجرای صنعتی باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling In-Shell Pasteurization of egg by computational fluid dynamics (CFD) technique

نویسنده English

mohsen Dalvi-Isfahan
Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
چکیده English

Egg contamination by Salmonella enteritidis is one of the most important causes of foodborne gastroenteritis throughout the world and the common method which can be used to inactivate this bacteria is pasteurization. In this study, the pasteurization of intact egg was mathematically modelled using a CFD technique. The results were compared with experimental data and it was found that the model could reasonably forecast the temperature of egg during pasteurization (R2>0.98). The model showed that in order to predict the temperature variation of the slowest heating zone (SHZ) with higher accuracy, it is necessary to to incorporate the influence of natural convection currents induced by the hot eggshell walls in the pasteurization process. Results indicated that the SHZ keeps moving during pasteurization and eventually stays in a region that is about 25% of the egg height from the bottom after 300 s of heating. These results also show that the time required to reduce the Salmonella enteritidis population in cold point of eggs to 5D is approximately 28 minutes. This model could serve as an important tool in better understanding of the pasteurization process, choosing the best process parameters and facilitate process optimization of intact egg pasteurization towards industrial implementation

کلیدواژه‌ها English

Computational fluid dynamic
Egg
Pasteurization
[1] FDA, 2011. Prevention of Salmonella Enteritidis in Shell Eggs during Production, Storage,and Transportation.http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Eggs/ucm285101.htm.
[2] USDA-FSIS, 2005. Risk Assessment for Salmonella Enteritidis in Shell Eggs and Salmonella spp. In Egg Products, October 2005. Available at: http://www.fsis.usda.gov/wps/wcm/connect/16abcb5f-21fc-4731-9346-fd8401582ba4/SE_Risk_Assess_Oct2005.pdf?MOD=AJPERES.
[3] Health Canada, 2011. Guidance for Industry on Reducing the Risk of Salmonella Enteritidis in Canadian Shell Eggs. Available from: http://www.hc-sc.gc.ca/fn-an/legislation/guide-ld/salmonella-enteritidis-eng.php.
[4] Denys, S., Pieters, J. G., & Dewettinck, K. (2003). Combined CFD and Experimental Approach for Determination of the Surface Heat Transfer Coefficient During Thermal Processing of Eggs. ournal of Food Science, 68(3), 943-951.
[5] Ramachandran, R., Malhotra, D., Anishaparvin, A., & Anandharamakrishnan, C. 2011. Computational fluid dynamics simulation studies on pasteurization of egg in stationary and rotation modes. Innovative Food Science & Emerging Technologies, 12(1), 38-44.
[6] Abbasnezhad, B., Hamdami, N., Monteau, J.-Y., & Vatankhah, H. 2016. Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg. 4(1), 42-49.
[7] Abbasnezhad, B., Dalvi-Isfahan, M., & Hamdami, N. 2019. CFD Analysis of Thermal Processing of Intact Eggs. In D.-W. Sun (Ed.), Computational Fluid Dynamics in Food Processing (2nd ed.). Boca Raton: CRC Press.
[8] O’Bryan, C. A., Ricke, S. C., & Crandall, P. G. 2017. Chapter 18 - Chemical and Physical Sanitation and Pasteurization Methods for Intact Shell Eggs. In S. C. Ricke & R. K. Gast (Eds.), Producing Safe Eggs (pp. 373-390). San Diego: Academic Press.
[9] Pasquali, F., Fabbri, A., Cevoli, C., Manfreda, G., & Franchini, A. 2010. Hot air treatment for surface decontamination of table eggs. Food Control, 21(4), 431-435.
[10] Geveke, D. J., Bigley, A. B. W., & Brunkhorst, C. D. 2017. Pasteurization of shell eggs using radio frequency heating. Journal of Food Engineering, 193, 53-57.
[11] Yang, Y., & Geveke, D. J. 2020. Shell egg pasteurization using radio frequency in combination with hot air or hot water. Food Microbiology, 85, 103281.
[12] Geveke, D. J., Gurtler, J. B., Jones, D. R., & Bigley, A. B. W. 2016. Inactivation of Salmonella in Shell Eggs by Hot Water Immersion and Its Effect on Quality. 81(3), M709-M714.
[13] Abbasnezhad, B., Hamdami, N., Shahedi, M., & Vatankhah, H. 2014. Thermophysical and rheological properties of liquid egg white and yolk during thermal pasteurization of intact eggs. Journal of Food Measurement and Characterization, 8(4), 259-269.
[14] Kumar, A., & Bhattacharya, M. 1991. Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still—cook retort. International Journal of Heat and Mass Transfer, 34(4/5), 1083–1096.
[15] Steffe, J.F., Mohamed, I.O., & Ford, E.W. 1986. Rheological properties of fluid foods: data compilation. In M.R. Okos (Ed.), Physical and Chemical Properties of Foods. St. Joseph, MI: Transaction of American Society of Agricultural Engineers.
[16] Ghani, A. G., Farid, M. M., Chen, X. D., & Richards, P. 2001. Thermal sterilization of canned food in a 3-D pouch using computational fluid dynamics. Journal of Food Engineering, 48, 147–156. https://doi.org/ 10.1016/S0260-8774(00)00150-3
[17] Welty, James R. 2008. Fundamentals of Momentum, Heat, And Mass Transfer. John Wiley & Sons Inc.
[18] Dalvi -Isfahan, M. 2020. A comparative study on the efficiency of two modeling approaches for predicting moisture content of apple slice during drying. Journal of food process engineering, 43(11), e13527
[19] Chen, C. R., & Ramaswamy, H. S. 2007. Visual Basics computer simulation package for thermal process calculations. Chemical Engineering and Processing: Process Intensification, 46(7), 603-613.
[20] Jenko, M. 2015. Numerical Cooking for Pasteurized Soft Boiled Eggs. Journal of Mechanical Engineering, 61(5), 319-330.
[21] FDA, 2009. Code of Federal Regulations, Title 21, Parts 16 and 118. Federal Register Final Rule: Guidance for Industry. Prevention of Salmonella Enteritidis in Shell Eggs during Production, Storage and Transportation. Available from:
http://www.fda.gov/downloads/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/FoodSafety/UCM285137.pdf.
[22] Hou, H., Singh, R.K., Muriana, P.M., Stadelman, W.J., 1996. Pasteurization of intact shell eggs. Food Microbiology. 13, 93–101.
[23] Lakins, D.G., Alvarado, C.Z., Thompson, L.D., Brashears, M.T., Brooks, J.C., Brashears, M.M., 2008. Reduction of Salmonella enteritidis in shell eggs using directional microwave technology. Poultry Science 87, 985–991.
[24] Kang, M. S., Park, J. H., & Kim, H. J. 2021. Predictive Modeling for the Growth of Salmonella spp. in Liquid Egg White and Application of Scenario-Based Risk Estimation. 9(3), 486.
[25] Toledo, R.T, 2007. Fundamentals of Food Process Engineering. Springer, New York.