سنتز آسان و سبز نانوکامپوزیت‌های زیست سازگار بر پایه گرافن اکسید کاهش‌یافته/اکسید آهن جهت اندازه‌گیری وانیلین در نمونه‌های غذایی: بهینه‌سازی به روش سطح پاسخ

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آیت ا… آملی
2 گروه شیمی، دانشگاه آزاد اسلامی واحد آیت ا… آملی
چکیده
اندازه‌گیری افزودنی‌ها نقش مهمی در کنترل کیفیت مواد غذایی دارد و تأثیر بسیاری بر سلامت عمومی دارد؛ بنابراین، تشخیص سریع این ترکیبات در نمونه‌های غذایی در ایمنی مواد غذایی اهمیت دارد. در این پژوهش، نانوکامپوزیت گرافن اکسید احیاکننده/ Fe3O4 (rG-Fe3O4-NC) از طریق عصاره پوست لیموترش در محیط آبی به‌عنوان یک عامل کاهنده سنتز شد. در ابتدا بهینه‌سازی چند متغیره بر مبنای طرح مرکب مرکزی چرخش پذیر در روش سطح پاسخ جهت تعیین شرایط بهینه متغیرهای تجربی مؤثر بر ساخت الکترود مورداستفاده قرار گرفت. طراحی آزمایش برای تعیین شرایط بهینه pH و محتوای نانوکامپوزیت (درصد) در سنتز الکترود انجام شد. شرایط بهینه شامل pH معادل 6 و محتوای نانوکامپوزیت 8 درصد تعیین شدند. سنتز نانو کامپوزیت‌ها با تکنیک‌های TEM و XRD مشخص شدند. پس‌ازآن، الکترود خمیر کربن (CPE) با rG-Fe3O4-NC اصلاح شد و به‌عنوان یک حسگر الکتروآنالیز برای بررسی وانیلین استفاده شد. گزینش پذیری الکترود اصلاح‌شده از طریق تداخل ویتامین B2، متیونین، والین، گلیسین، کلرید پتاسیم (KCl)، برومید پتاسیم (KBR) و گلوکز در حضور 25 میکرومولار وانیلین در سطح rG-Fe3O4-NC/CPE با خطای قابل‌قبول 5 درصد بررسی شد. نتایج نشان داد که 500 برابر ترکیبات فوق هیچ‌گونه تداخل مهمی در فرآیند تشخیص بر 25 میکرومولار وانیلین ندارند. گستره خطی برای وانیلین در محدوده بین 0/1 نانومولار تا 250 میکرو مولار با حد تشخیص 3/0 نانومولار گزارش شد. در نهایت rG-Fe3O4-NC/CPE با موفقیت برای تعیین مقدار وانیلین در نمونه‌های غذایی استفاده شد. بنابراین می توان از حسگر پیشنهادی در خطوط تولید مواد غذایی نظیر شیرهای طعم دار و بستنی به صورت برخط در تعیین مقدار وانیلین استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Facil and green synthesis of biocompatible nanocomposites based on iron oxide/reduced graphene oxide for determination of Vanillin in Food Samples: Response surface methodology optimization

نویسندگان English

Mahsa Tabrizi 1
Seyed-Ahmad Shahidi 1
Fereshteh Chekin 2
Azade Ghorbani-HasanSaraei 1
Shahram Naghizadeh Raeisi 1
1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University
2 Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University
چکیده English

Additives analysis plays important role in food quality control and has a great impact on public health. Therefore, rapid detection of these compounds in food samples is important in food safety. In this study, reduced graphene oxide /Fe3O4 nanocomposite (rG-Fe3O4-NC) was synthesized in the presence of sour lemon peel extract as a reducer and stabilizer agent in aqueous solution. For the first time multivariate optimization based on rotatable central composite design (RCCD) coupled with response surface methodology (RSM) was used to optimize effective experimental variables for fabrication of electrode. An experimental design has been used to examine and optimize the impacts of diverse experimental parameters like the pH and concentration of the nanocomposite in rG-Fe3O4-NC. The optimal conditions were pH: 6 and the concentration of the nanocomposite: 8%. The synthesized nanocomposites were characterized by TEM and XRD techniques. The rGO modified carbon paste electrode (rG-Fe3O4-NC/CPE) was used as a highly sensitive electrochemical sensor for the detection of vanillin. Interference of vitamin B2, methionine, valine, glycine and KBR, KCl and glucose were checked in the presence of 25 µM vanillin at surface of rG-Fe3O4-NC/CPE with acceptable error 5%. Results confirmed that 500-folde of above compounds have not any important interference in monitoring process of 25 µM vanillin. The vanillin sensor showed linear range between 01 nM – 250 μM and a low detection limit of 0.3 nM. Finally, the rG-Fe3O4-NC/CPE was successfully used for determining vanillin in food samples. Therefore, this sensor can be used in food industry to the online determination of vanillin in flavored milks and ice cream.

کلیدواژه‌ها English

Electrochemical sensor
Experimental design
Sour lemon peel extract
Vanillin
[1] Leong, G., Uzio, R., & Derbesy, M. (1989). Synthesis, identification and determination of glucosides present in green vanilla beans (Vanilla fragrans Andrews). Flavour and fragrance journal, 4(4), 163-167.
[2] Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. Journal of the Science of Food and Agriculture, 99(2), 499-506.
[3] Ranadive, A. (2006). Vanilla-Inside look: Chemistry and Biochemistry of Vanilla Flavor-A survey of the latest research. Perfumer and Flavorist, 31(3), 38-45.
[4] Havkin-Frenkel, D. (2022). Vanillin. In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc (Ed.).
[5] Shu, M., Man, Y., Ma, H., Luan, F., Liu, H., & Gao, Y. (2016). Determination of vanillin in milk powder by capillary electrophoresis combined with dispersive liquid-liquid microextraction. Food Analytical Methods, 9(6), 1706-1712.
[6] Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176.
[7] Hingse, S. S., Digole, S. B., & Annapure, U. S. (2014). Method development for simultaneous detection of ferulic acid and vanillin using high-performance thin layer chromatography. Journal of Analytical Science and Technology, 5(1), 1-9.
[8] Chen, L., Chaisiwamongkhol, K., Chen, Y., & Compton, R. G. (2019). Rapid electrochemical detection of vanillin in natural vanilla. Electroanalysis, 31(6), 1067-1074.
[9] Zabihpour, T., Shahidi, S. A., Karimi-Maleh, H., & Ghorbani-HasanSaraei, A. (2020). An ultrasensitive electroanalytical sensor based on MgO/SWCNTs-1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchemical Journal, 154, 104572.
[10] Gupta, V. K., Karimi-Maleh, H., Agarwal, S., Karimi, F., Bijad, M., Farsi, M., & Shahidi, S. A. (2018). Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors, 18(9), 2817.
[11] Altunay, N. (2018). Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultraviolet-visible spectrophotometry. Lwt, 93, 9-15.
[12] Nazari, F., Ghoreishi, S. M., & Khoobi, A. (2020). Bio-based Fe3O4/chitosan nanocomposite sensor for response surface methodology and sensitive determination of gallic acid. International Journal of Biological Macromolecules, 160, 456-469.
[13] Mehdizadeh, Z., Shahidi, S. A., Ghorbani-HasanSaraei, A., Bagher, M., & Limooei, M. B. (2021). An Electroanalytical Determination of Sunset Yellow in Food Product by Amplified Nanostructure Carbon Paste Electrode as Sensor. International Journal of Electrochemical Science, 16(4).
[14] Ebrahimi, P., Shahidi, S. A., & Bijad, M. (2020). A rapid voltammetric strategy for determination of ferulic acid using electrochemical nanostructure tool in food samples. Journal of Food Measurement and Characterization, 14(6), 3389-3396.
[15] Karimi-Maleh, H., Karimi, F., Rezapour, M., Bijad, M., Farsi, M., Beheshti, A., & Shahidi, S. A. (2019). Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: A review. Current Analytical Chemistry, 15(4), 410-422.
[16] Vatandost, E., Ghorbani-Hasan Saraei, A., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2021). Electrochemical sensor based on magnetic Fe3O4–reduced graphene oxide hybrid for sensitive detection of binaphthol. Russian Journal of Electrochemistry, 57(5), 490-498.
[17] Tabrizi, M., Shahidi, S. A., Chekin, F., Ghorbani-HasanSaraei, A., & Raeisi, S. N. (2022). Reduce Graphene Oxide/Fe3O4 Nanocomposite Biosynthesized by Sour Lemon Peel; Using as Electro-catalyst for Fabrication of Vanillin Electrochemical Sensor in Food Products Analysis and Anticancer Activity. Topics in Catalysis, 65, 726–732.
[18] Vatandost, E., Ghorbani-HasanSaraei, A., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2020). Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products. Food Chemistry: X, 6, 100085.
[19] Zhao, Q., Lin, Y., Han, N., Li, X., Geng, H., Wang, X., ... & Wang, S. (2017). Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Delivery, 24(2), 94-107.
[20] Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71.
[21] Navyatha, B., Kumar, R., & Nara, S. (2016). A facile method for synthesis of gold nanotubes and their toxicity assessment. Journal of environmental chemical engineering, 4(1), 924-931.
[22] Wang, J., Yang, B., Zhang, K., Bin, D., Shiraishi, Y., Yang, P., & Du, Y. (2016). Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites. Journal of colloid and interface science, 481, 229-235.
[23] Padil, V. V. T., & Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International journal of nanomedicine, 8, 889.
[24] Shameli, K., Ahmad, M. B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y., & Zargar, M. (2012). Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine, 7, 5603.
[25] Parsons, J. G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2007). Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Developments in environmental science, 5, 463-485.
[26] Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356.
[27] Vatandost, E., Saraei, A. G. H., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2020). Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. ChemistrySelect, 5(33), 10401-10406.
[28] Ramezanpour, M., Raeisi, S. N., Shahidi, S. A., & Ramezanpour, S. (2020). Trace analysis of Pb (II) in milk samples by Fe 3 O 4@ SiO 2@ 3-chloropropyltriethoxysilane@ o-phenylendiamine nanoparticles as an unprecedented adsorbent for magnetic dispersive solid phase extraction. Micro & Nano Letters, 15(6), 390-395.
[29] Shahidi, S. A. (2022). Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology. Food and Chemical Toxicology, 163, 112981.
[30] Zabihpour, T., Shahidi, S. A., Karimi-Maleh, H., & Ghorbani-HasanSaraei, A. (2020). Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. Journal of Food Measurement and Characterization, 14(2), 1039-1045.
[31] Huang, X., Lu, J., Lu, C., Wei, L., & Li, Q. (2014). Separation and enrichment of flavonoids from orange peel using magnetic nanoparticles. Asian Journal of Chemistry, 26(4), 1189-1194.
[32] Shahidi, S. A., Ebrahimi, P., Zabihpour, T., & Naghizadeh Raeisi, S. (2021). Electrochemical Analysis of Sunset Yellow Based on NiO-SWCNTs NC/IL Modified Carbon Paste Electrode in Food Samples. Journal of Food Biosciences and Technology, 11(2), 11-22.
[33] Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., ... & Li, F. (2015). One-pot synthesis of CoFe 2 O 4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. Journal of Materials Chemistry A, 3(10), 5535-5546.
[34] Alpar, N., Yardım, Y., & Şentürk, Z. (2018). Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensors and Actuators B: Chemical, 257, 398-408.
[35] Karimi-Maleh, H., Hatami, M., Moradi, R., Khalilzadeh, M. A., Amiri, S., & Sadeghifar, H. (2016). Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Microchimica Acta, 183(11), 2957-2964.
[36] Moghaddam, A., Zamani, H. A., & Karimi-Maleh, H. (2021). A new electrochemical platform for dasatinib anticancer drug sensing using Fe3O4-SWCNTs/ionic liquid paste sensor. Micromachines, 12(4), 437.
[37] Behrouzifar, F., Shahidi, S. A., Chekin, F., Hosseini, S., & Ghorbani-HasanSaraei, A. (2021). Preparation and Electrochemical Performance of Fe3O4-SWCNTs/ionic Liquid Nanocomposites as Sensor for Determination of Tert-Butylhydroquinone. International Journal of Electrochemical Science, 16(4).
[38] Murugan, E., & Dhamodharan, A. (2021). Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diamond and Related Materials, 120, 108684.
[39] Dong, M., Zhao, S., Lv, Y., Chen, F., Wang, A., Fu, L., & Lin, C. T. (2021). Electroanalytical determination of vanillin using PdZn particles decorated ZnS fibers. Journal of Food Measurement and Characterization, 15(5), 4718-4725.
[40] Karakaya, S., & Kaya, İ. (2021). A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. Electroanalysis, 33(6), 1615-1622.