[1] Leong, G., Uzio, R., & Derbesy, M. (1989). Synthesis, identification and determination of glucosides present in green vanilla beans (Vanilla fragrans Andrews). Flavour and fragrance journal, 4(4), 163-167.
[2] Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. Journal of the Science of Food and Agriculture, 99(2), 499-506.
[3] Ranadive, A. (2006). Vanilla-Inside look: Chemistry and Biochemistry of Vanilla Flavor-A survey of the latest research. Perfumer and Flavorist, 31(3), 38-45.
[4] Havkin-Frenkel, D. (2022). Vanillin. In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc (Ed.).
[5] Shu, M., Man, Y., Ma, H., Luan, F., Liu, H., & Gao, Y. (2016). Determination of vanillin in milk powder by capillary electrophoresis combined with dispersive liquid-liquid microextraction. Food Analytical Methods, 9(6), 1706-1712.
[6] Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176.
[7] Hingse, S. S., Digole, S. B., & Annapure, U. S. (2014). Method development for simultaneous detection of ferulic acid and vanillin using high-performance thin layer chromatography. Journal of Analytical Science and Technology, 5(1), 1-9.
[8] Chen, L., Chaisiwamongkhol, K., Chen, Y., & Compton, R. G. (2019). Rapid electrochemical detection of vanillin in natural vanilla. Electroanalysis, 31(6), 1067-1074.
[9] Zabihpour, T., Shahidi, S. A., Karimi-Maleh, H., & Ghorbani-HasanSaraei, A. (2020). An ultrasensitive electroanalytical sensor based on MgO/SWCNTs-1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchemical Journal, 154, 104572.
[10] Gupta, V. K., Karimi-Maleh, H., Agarwal, S., Karimi, F., Bijad, M., Farsi, M., & Shahidi, S. A. (2018). Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors, 18(9), 2817.
[11] Altunay, N. (2018). Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultraviolet-visible spectrophotometry. Lwt, 93, 9-15.
[12] Nazari, F., Ghoreishi, S. M., & Khoobi, A. (2020). Bio-based Fe3O4/chitosan nanocomposite sensor for response surface methodology and sensitive determination of gallic acid. International Journal of Biological Macromolecules, 160, 456-469.
[13] Mehdizadeh, Z., Shahidi, S. A., Ghorbani-HasanSaraei, A., Bagher, M., & Limooei, M. B. (2021). An Electroanalytical Determination of Sunset Yellow in Food Product by Amplified Nanostructure Carbon Paste Electrode as Sensor. International Journal of Electrochemical Science, 16(4).
[14] Ebrahimi, P., Shahidi, S. A., & Bijad, M. (2020). A rapid voltammetric strategy for determination of ferulic acid using electrochemical nanostructure tool in food samples. Journal of Food Measurement and Characterization, 14(6), 3389-3396.
[15] Karimi-Maleh, H., Karimi, F., Rezapour, M., Bijad, M., Farsi, M., Beheshti, A., & Shahidi, S. A. (2019). Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: A review. Current Analytical Chemistry, 15(4), 410-422.
[16] Vatandost, E., Ghorbani-Hasan Saraei, A., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2021). Electrochemical sensor based on magnetic Fe3O4–reduced graphene oxide hybrid for sensitive detection of binaphthol. Russian Journal of Electrochemistry, 57(5), 490-498.
[17] Tabrizi, M., Shahidi, S. A., Chekin, F., Ghorbani-HasanSaraei, A., & Raeisi, S. N. (2022). Reduce Graphene Oxide/Fe3O4 Nanocomposite Biosynthesized by Sour Lemon Peel; Using as Electro-catalyst for Fabrication of Vanillin Electrochemical Sensor in Food Products Analysis and Anticancer Activity. Topics in Catalysis, 65, 726–732.
[18] Vatandost, E., Ghorbani-HasanSaraei, A., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2020). Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products. Food Chemistry: X, 6, 100085.
[19] Zhao, Q., Lin, Y., Han, N., Li, X., Geng, H., Wang, X., ... & Wang, S. (2017). Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Delivery, 24(2), 94-107.
[20] Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71.
[21] Navyatha, B., Kumar, R., & Nara, S. (2016). A facile method for synthesis of gold nanotubes and their toxicity assessment. Journal of environmental chemical engineering, 4(1), 924-931.
[22] Wang, J., Yang, B., Zhang, K., Bin, D., Shiraishi, Y., Yang, P., & Du, Y. (2016). Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites. Journal of colloid and interface science, 481, 229-235.
[23] Padil, V. V. T., & Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International journal of nanomedicine, 8, 889.
[24] Shameli, K., Ahmad, M. B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y., & Zargar, M. (2012). Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine, 7, 5603.
[25] Parsons, J. G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2007). Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Developments in environmental science, 5, 463-485.
[26] Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356.
[27] Vatandost, E., Saraei, A. G. H., Chekin, F., Raeisi, S. N., & Shahidi, S. A. (2020). Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. ChemistrySelect, 5(33), 10401-10406.
[28] Ramezanpour, M., Raeisi, S. N., Shahidi, S. A., & Ramezanpour, S. (2020). Trace analysis of Pb (II) in milk samples by Fe 3 O 4@ SiO 2@ 3-chloropropyltriethoxysilane@ o-phenylendiamine nanoparticles as an unprecedented adsorbent for magnetic dispersive solid phase extraction. Micro & Nano Letters, 15(6), 390-395.
[29] Shahidi, S. A. (2022). Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology. Food and Chemical Toxicology, 163, 112981.
[30] Zabihpour, T., Shahidi, S. A., Karimi-Maleh, H., & Ghorbani-HasanSaraei, A. (2020). Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. Journal of Food Measurement and Characterization, 14(2), 1039-1045.
[31] Huang, X., Lu, J., Lu, C., Wei, L., & Li, Q. (2014). Separation and enrichment of flavonoids from orange peel using magnetic nanoparticles. Asian Journal of Chemistry, 26(4), 1189-1194.
[32] Shahidi, S. A., Ebrahimi, P., Zabihpour, T., & Naghizadeh Raeisi, S. (2021). Electrochemical Analysis of Sunset Yellow Based on NiO-SWCNTs NC/IL Modified Carbon Paste Electrode in Food Samples. Journal of Food Biosciences and Technology, 11(2), 11-22.
[33] Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., ... & Li, F. (2015). One-pot synthesis of CoFe 2 O 4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. Journal of Materials Chemistry A, 3(10), 5535-5546.
[34] Alpar, N., Yardım, Y., & Şentürk, Z. (2018). Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensors and Actuators B: Chemical, 257, 398-408.
[35] Karimi-Maleh, H., Hatami, M., Moradi, R., Khalilzadeh, M. A., Amiri, S., & Sadeghifar, H. (2016). Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Microchimica Acta, 183(11), 2957-2964.
[36] Moghaddam, A., Zamani, H. A., & Karimi-Maleh, H. (2021). A new electrochemical platform for dasatinib anticancer drug sensing using Fe3O4-SWCNTs/ionic liquid paste sensor. Micromachines, 12(4), 437.
[37] Behrouzifar, F., Shahidi, S. A., Chekin, F., Hosseini, S., & Ghorbani-HasanSaraei, A. (2021). Preparation and Electrochemical Performance of Fe3O4-SWCNTs/ionic Liquid Nanocomposites as Sensor for Determination of Tert-Butylhydroquinone. International Journal of Electrochemical Science, 16(4).
[38] Murugan, E., & Dhamodharan, A. (2021). Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diamond and Related Materials, 120, 108684.
[39] Dong, M., Zhao, S., Lv, Y., Chen, F., Wang, A., Fu, L., & Lin, C. T. (2021). Electroanalytical determination of vanillin using PdZn particles decorated ZnS fibers. Journal of Food Measurement and Characterization, 15(5), 4718-4725.
[40] Karakaya, S., & Kaya, İ. (2021). A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. Electroanalysis, 33(6), 1615-1622.