The Effects of High-fat Diet and lactobacillus reuteri on Body Weight, Metabolic profiles and Gut Microbiota of C57BL/6 Mice

Authors
1 Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
3 Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
Abstract
This study investigated the effects of diet and probiotic on the body characteristics of C57BL/6 mice. Mice were divided into four groups: the control group, Lactobacillus reutrei DMC20016 probiotic group, high-fat diet (HFD) group, and probiotic with the high-fat diet group. After eight weeks of storage, a high-fat diet and probiotic effects on gut microbiota, body weight, blood factors, leptin hormone, and lipopolysaccharide were studied. A high-fat diet has increased body weight, fat mass, and liver weight. The HFD group had the highest body weight gain (8.36 ± 1.02 gr) compared to the other groups, and consumption of Lactobacillus reuteri did not show a significant effect on body weight. The high-fat diet also significantly increased lipopolysaccharide and leptin, but Lactobacillus reuteri decreased these parameters compared to the HFD group. The abundance and diversity of gut microbiota depended on diet and probiotics consumed. With the consumption of a high-fat diet, the number of Firmicutes ( 70%) increased and Bacteroidetes (<1%) decreased. However, the amount of Actinobacteria (4%) and Firmicutes (16%) decreased, and the amount of Proteobacteria (78%) increased in the H.LR group compared to the control sample. According to this study and similar research, not all probiotics are effective on obesity indicators, and probiotic supplements should be selected based on the purpose of use.
Keywords

Subjects


[1] Phelan, S., Hart, C. N., Jelalian, E., Muñoz-Christian, K., Alarcon, N., McHugh, A., ... & Wing, R. R. (2021). Effect of prenatal lifestyle intervention on maternal postpartum weight retention and child body mass index z-score at 36 months. International Journal of Obesity, 45(5), 1133-1142.
[2] Laura, B., Diana, K., Lyazzat, A., & Zhanat, B. (2019). Nutritional Behaviour is a Social Problem in the Modern Lifestyle. Journal of Nutritional Therapeutics, 8, 6-8.
[3] Blüher, M. (2020). Metabolically healthy obesity. Endocrine reviews, 41(3), 405-420.
[4] Upadhyay, J., Farr, O., Perakakis, N., Ghaly, W., & Mantzoros, C. (2018). Obesity as a disease. Medical Clinics, 102(1), 13-33.
[5] World Health Organization. (2020). Overweight and obesity.
[6] Cani, P. D., & Van Hul, M. (2020). Gut microbiota and obesity: causally linked?. Expert review of gastroenterology & hepatology, 14(6), 401-403.
[7] Crovesy, L., Masterson, D., & Rosado, E. L. (2020). Profile of the gut microbiota of adults with obesity: a systematic review. European journal of clinical nutrition, 74(9), 1251-1262.
[8] De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., ... & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691-14696
[9] Flint, H. J. (2012). The impact of nutrition on the human microbiome. Nutrition reviews, 70(suppl_1), S10-S13.
[10] Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009a). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science translational medicine, 1(6), 6ra14-6ra14.
[11] Furet, J. P., Kong, L. C., Tap, J., Poitou, C., Basdevant, A., Bouillot, J. L., ... & Clément, K. (2010). Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12), 3049-3057.
[12] Monira, S., Nakamura, S., Gotoh, K., Izutsu, K., Watanabe, H., Alam, N. H., ... & Alam, M. (2011). Gut microbiota of healthy and malnourished children in Bangladesh. Frontiers in microbiology, 2, 228.
[13] Roselli, M., Finamore, A., Brasili, E., Rami, R., Nobili, F., Orsi, C., ... & Mengheri, E. (2018). Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. Journal of Functional Foods, 45, 321-329.
[14] Ting, Y., Chang, W. T., Shiau, D. K., Chou, P. H., Wu, M. F., & Hsu, C. L. (2018). Anti-obesity efficacy of quercetin-rich supplement on diet-induced obese rats: effects on body composition, serum lipid profile, and gene expression. Journal of agricultural and food chemistry, 66(1), 70-80.
[15] Sivamaruthi, B. S., Kesika, P., Suganthy, N., & Chaiyasut, C. (2019). A review on role of microbiome in obesity and anti-obesity properties of probiotic supplements. BioMed research international, 2019.
[16] Butel, M. J. (2014). Probiotics, gut microbiota and health. Médecine et maladies infectieuses, 44(1), 1-8.
[17] Rouxinol-Dias, A. L., Pinto, A. R., Janeiro, C., Rodrigues, D., Moreira, M., Dias, J., & Pereira, P. (2016). Probiotics for the control of obesity–Its effect on weight change. Porto Biomedical Journal, 1(1), 12-24.
[18] Plaza-Diaz, J., Gomez-Llorente, C., Abadia-Molina, F., Saez-Lara, M. J., Campaña-Martin, L., Muñoz-Quezada, S., ... & Fontana, L. (2014). Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats. PloS one, 9(5), e98401.
[19] Drissi, F., Raoult, D., & Merhej, V. (2017). Metabolic role of lactobacilli in weight modification in humans and animals. Microbial pathogenesis, 106, 182-194.
[20] Cheng, M., Zhang, X., Miao, Y., Cao, J., Wu, Z., & Weng, P. (2017). The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3 ″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International, 92, 9-16.
[21] Angelakis, E., Bastelica, D., Amara, A. B., El Filali, A., Dutour, A., Mege, J. L., ... & Raoult, D. (2012). An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microbial pathogenesis, 52(1), 61-68.
[22] Million, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., ... & Raoult, D. (2012). Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International journal of obesity, 36(6), 817-825.
[23] Qiao, Y., Sun, J., Xia, S., Li, L., Li, Y., Wang, P., ... & Le, G. (2015). Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. Journal of Functional Foods, 14, 424-434.
[24] Arora, T., Singh, S., & Sharma, R. K. (2013). Probiotics: interaction with gut microbiome and anti-obesity potential. Nutrition, 29(4), 591-596.
[25] Ji, Y., Park, S., Park, H., Hwang, E., Shin, H., Pot, B., & Holzapfel, W. H. (2018). Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model. Frontiers in microbiology, 9, 710.
[26] Park, Y. H., Kim, J. G., Shin, Y. W., Kim, S. H., & Whang, K. Y. (2007). Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. Journal of Microbiology and Biotechnology, 17(4), 655-662.
[27] Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in cellular and infection microbiology, 2, 86.
[28] Kersten, S. (2014). Physiological regulation of lipoprotein lipase. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841(7), 919-933.
[29] Miremadi, F., Ayyash, M., Sherkat, F., & Stojanovska, L. (2014). Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. Journal of Functional Foods, 9, 295-305.
[30] Andrade, S., & Borges, N. (2009). Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. Journal of dairy research, 76(4), 469-474.
[31] Greany, K. A., Bonorden, M. J. L., Hamilton-Reeves, J. M., McMullen, M. H., Wangen, K. E., Phipps, W. R., ... & Kurzer, M. S. (2008). Probiotic capsules do not lower plasma lipids in young women and men. European journal of clinical nutrition, 62(2), 232-237.
[32] Li, Z., Jin, H., Oh, S. Y., & Ji, G. E. (2016). Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochemical and biophysical research communications, 480(2), 222-227.
[33] Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772.
[34] Pan, W. W., & Myers, M. G. (2018). Leptin and the maintenance of elevated body weight. Nature Reviews Neuroscience, 19(2), 95-105.
[35] Fåk, F., & Bäckhed, F. (2012). Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. e46837.
[36] Cani, P. D., & Delzenne, N. M. (2009). Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current opinion in pharmacology, 9(6), 737-743.
[37] Xiao, S., & Zhao, L. (2014). Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS microbiology ecology, 87(2), 303-314.
[38] Harakeh, S. M., Khan, I., Kumosani, T., Barbour, E., Almasaudi, S. B., Bahijri, S. M., ... & Azhar, E. I. (2016). Gut microbiota: a contributing factor to obesity. Frontiers in Cellular and Infection Microbiology, 6, 95.
[39] Cornejo-Pareja, I., Munoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance of gut microbiota in obesity. European journal of clinical nutrition, 72(1), 26-37.
[40] Martí, M., Spreckels, J. E., Ranasinghe, P. D., Wejryd, E., Marchini, G., Sverremark-Ekström, E., ... & Abrahamsson, T. (2021). Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. Cell reports medicine, 2(3), 100206.