ویژگی های فیزیکوشیمیایی، بافتی، حسی و عملکردی بستنی حاوی پایدار کننده کنجاک گلوکومانان

نویسندگان
1 1گروه علوم و صنایع غذایی، واحد تربت حیدریه، دانشگاه آزاد اسلامی، تربت حیدریه، ایران.
2 گروه علوم و صنایع غذایی، واحد تربت حیدریه، دانشگاه آزاد اسلامی، تربت حیدریه، ایران.
چکیده
پایدارکننده های هیدروکلوئیدی در غلظت های پایین، توانایی تولید محصولاتی با ویسکوزیته بالا دارند. این ترکیبات به جهت عملکردهای منحصر بفرد به طور گسترده در صنایع مختلف غذایی به کار میروند. در پژوهش حاضر اثر مقادیر مختلف هیدروکلوئید کنجاک (سطوح مختلف 2/0، 4/0 و 6/0 درصد) بر خصوصیات فیزیکی شامل pH، اسیدیته، چربی، مواد جامد کل و مقاومت به ذوب، خصوصیات حسی و رفتار رئولوژیکی بستنی شامل بررسی رفتار جریانی و برازش مدل های رئولوژیکی مشهور، بررسی شد. نتایج به دست آمده نشان داد که ویسکوزیته، ماده خشک و خصوصیات ذوبی با جایگزینی کنجاک رابطه مستقیم داشت. تمام سطوح جایگزینی کنجاک منجر به افزایش معنی دار ویسکوزیته شد. کمترین مقاومت به ذوب و بالاترین ماده خشک برای نمونه حاوی بالاترین میزان کنجاک مشاهده گردید. با افزایش میزان کنجاک به 6/0 درصد، ضریب قوام افزایش اما شاخص رفتار جریان کاهش یافت. مدل قانون توان و مدل هرشل بالکلی بطور موفقیت آمیزی رفتار رئولوژیکی بستنی را توضیح دادند. با افزایش سطح پایدارکننده کنجاک، تنش تسلیم به طور معناداری افزایش یافت. دلیل بهبود خصوصیات رئولوژیکی به حضور ترکیباتی با وزن مولکولی بالا که توانایی حفظ آب را دارا میباشند ، نسبت داده می شود. در ارزیابی حسی از نظر پذیرش کلی ، نمونه شاهد کمترین امتیاز را کسب نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical, Textural, Sensorial and Functional Properties of Ice Cream Containing Glucomannan Konjac as Stabilizer

نویسندگان English

Maryam Alaee 1
Hojjat Karazhiyan 2
1 Department of Food Science and Technology, Torbat-e Heydarieh Branch, Islamic Azad University, Torbat-e Heydarieh, Iran
2 Department of Food Science and Technology, Torbat-e Heydarieh Branch, Islamic Azad University, Torbat-e Heydarieh, Iran
چکیده English

Hydrocolloid stabilizers have the potential to produce high viscosity products at low concentrations. Due to their unique functionalities these products are widely used in food process industry. In current research the effects of different concentrations of Glucomannan Konjac (different levels of 0.2, 0.4, 0.6%) were evaluated on physical properties including pH, acidity, fat, total solids and melting resistance, sensorial characteristics and rheological properties of ice cream including flow behaviour and fitting with famous rheological models. The results revealed that viscosity, total solids and melting properties had direct relation with konjac substitution level. All substitution levels lead in significant increase in viscosity. The lowest resistance to melting and the highest total solid contents was related to the highest konjac concentration. Consistency coefficient increased and flow index behaviour decreased, With increasing konjac level up to 0.6%. Power law and Herschel-Bulkley models were successfully fitted with the rheological parameters. Yield stress significantly increased with increasing level of stabilizer. These improvement in rheological behaviour is attributed to the presence of high molecular weight components that have the potential to maintain water. Control sample gained the lowest score in sensorial evaluations.

کلیدواژه‌ها English

Konjac Hydrocolloid
Ice cream
Consistency coefficient
Flow index behaviour
[1] Goff, H.D. (2008). 65 Years of ice cream science. International dairy journal, 18(7): 754-758.
[2] Sahin, C. and Ozdemir, F. (2007). Effect of some hydrocolloids on the serum separation of different formulated ketchups. Journal of Food Engineering, 81: 437- 446.
[3] BahramParvar, M. and Mazaheri Tehrani, M. (2011). Application and functions of stabilizers in ice cream. Food Reviews International, 27: 389-407.
[4] Razavi, S.M.A., Habibi, M.B. and Nayebzadeh, K. (2011). Effect of dairy substituents and stabilizers on chemical and physical properties of soy ice cream (Parvin). Iranian Journal of Agricultural Sciences, 32(3): 615-624.
[5] Mahrooghi, M., Ghods Rohani, M. and Rashidi, H. (2017). The Effects of Hydrocolloids (Konjac & Xanthan) on Textural Properties of Spreadable Process Cheese. Journal of Food Science and Technology, 68 (14): 293-306.
[6] Dai, S., Corke, H. and Shah, N.P. (2016). Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 99:1-12.
[7] Felix da Silva, D., de Souza Ferreira, S., Luciano Bruschi, M., Britten, M. and Matumoto-Pintro, P.T. (2016). Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60: 308-316.
[8] Akalin, A. and Erisir, D. (2008). Effects of Inulin and Oligofructose on the Rheological Characteristics and Probiotic Culture Survival in Low-Fat Probiotic Ice Cream. Food Microbiology and Safety, 4: 184-188.
[9] AOAC.2005. Official methods of analysis. 16th Edn. Association of official analytical chemists. Washington DC, USA.
[10] Mahdeian, E. and Mazaheri Tehrani, M. (2011). Optimization of Process Condition and Formulation of Soy-cow Milk Mix for Probiotic Yoghurt ice cream Production. PhD thesis. Ferdowsi University of Mashhad Faculty of Agriculture.
[11] Moeenfard, M. and Tehrani, M. (2008). Effect of Some Stabilizers on the Physicochemical and Sensory Properties of Ice Cream Type Frozen Yogurt. American-Eurasian, Agric and Envirinment Science, 4: 584-589.
[12] Marshall, R. T., Goff, H. D. and Hartel, R. W. (2012 ). Ice Cream. Springer.
[13] Goff, H. D. and Hartel, R. W. (2013). Ice Cream. Springer Science & Business Media.
[14] Tobin, J., Fitzsimons, S.M., Kelly, A.L. and Fenelon, M. (2011). The effect of native and modified konjac on the physical attributes of pasteurized and UHT-treated skim milk. International Dairy Journal, 790-797.
[15] Koxholt, M. M. R., Eisenmann, B. and Hinrichst, J. (2001). Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science, 84, 31-37.
[16] El‐Nagar, G., Clowes, G., Tudori ǎ, , Kuri, V. and Br nnan, S. ( 2002). Rheological quality and stability of yog‐ice cream with added inulin. International Journal of Dairy Technology,55 (2):89 -93 .
[17] Guven, M., and Karaca, O. B. (2002). The effects of varying sugar content and fruit concentration the physical properties of vanilla and fruit ice cream type frozen yogurt. International Journal of Dairy Technology, 55(1):27-31.
[18] Muse, M. R. and Hartel, R. W. (2004). Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87(1),1 - 10.
[19] BahramParvar, M., Haddad Khodaparast, M. H. and Razavi, S. M. A. (2009). The effect of Lallemantia royleana (Balangu) seed, palmate-tuber salep and carboxymethylcellulose gums on the physiochemical and sensory properties of typical soft ice cream. International Journal of Dairy Technology, 62, 571–576
[20] Marshall, R.T. and Goff, D., 2003. Formulating and manufacturing ice cream and other frozen desserts. Food technology. 57(3),32-44.
[21] Adapa, S., Schmidt, K. A., Jeon, I. J., Herald, T. J. and Flores, R. A. (2000). Mechanisms of ice crystallization and recrystallization in ice cream: a review. Food Reviews International, 16(3): 259–271.
[22] Herrera, M.L., M'Cann, J.I., Ferrero, C., Hagiwara, T., Zaritzky, N.E., and Hartel, R.W. (2007). Thermal, mechanical, and molecular relaxation properties of frozen sucrose and fructose solutions containing hydrocolloids. Food Biophysics, 2: 20-28.
[23] Tiwari, A., Sharma, H. K., Kumar, N., & Kaur, M. (2015). The effect of inulin as a fat replacer on the quality of low‐fat ice cream. International Journal of Dairy Technology, 68(3): 374-380 .
[24] Dogan, M., Kayacier, A., Toker, O.S., Yilmaz, M.T. and Karaman, S. (2013). Steady, Dynamic, Creep, and Recovery Analysis of Ice Cream Mixes Added with Different Concentrations of Xanthan Gum. Food Bioprocess Technology, 6: 1420–1433.
[25] Minhas, K.S., Sidhu, J.S., Mudahar, G.S. and Singh, A.K. (2002). Flow behavior characteristics of ice cream mix made with buffalo milk and various stabilizers. Plant Foods for Human Nutrition, 57: 25-40.
[26] Javidi, F., Razavi, S.M.A., Fataneh Behrouzian, F. and Alghooneh, A. (2016). The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low-fat ice cream. Food Hydrocolloids, 52:625-633.
[27] Missaire, F., Qiu, C-G. and Rao, M.A. (1990). Yield stress of structured and unstructured food suspensions. Journal of Texture Studies, 21(4): 479-490
[28] Emadzadeh, B., Razavi, S.M.A. and Nassiri Mahallati, M. (2012). Effects of Fat Replacers and Sweeteners on the Time-Dependent Rheological Characteristics and Emulsion Stability of Low-Calorie Pistachio Butter: A Response Surface Methodology. Food and Bioprocess Technology, 5:1581-1591
[29] Soukoulis, C., Chandrinos, I. and Tzia, C. (2008). Study of the functionality of selected hydrocolloids and their blends with K-carrageenan on storage quality of vanilla ice cream. LWT-Food Science and Technology, 41: 1816-1827.
[30] Karaman, S. and Kayacier, A. (2012). Rheology of ice cream mix flavored with black tea or herbal teas and effect of flavoring on the sensory properties of ice cream. Food and Bioprocess Technology, 5(8), 3159-3169.
[31] Clarke, C. (2004). The Science of ice cream. The Royal Society of Chemistry, 38-59.
[32] Soukoulis, C., Rontogianni, E. and Tzia, C. (2010). Contribution of thermal, rheological and physical measurements to the determination of sensorially perceived quality of ice cream containing bulk sweeteners. Journal of Food Engineering, 100: 634-641.
[33] Chang, Y. and Hartel, R.W. (2002). Stability of air cells in ice cream during hardening and storage. Journal of Food Engineering, 55 (1): 59-70.
[34] Granger, C., Langendorff, V., Renouf, N., Barey, P. and Cansell, M. (2004). Short Communication: Impact of Formulation on Ice Cream Microstructures: An Oscillation Thermo-Rheometry Study. Dairy Science, 87: 810-812.