Comparison of the effect of dielectric barrier discharge plasma in surface and volume mode of treatment on physical and chemical properties of saffron

Authors
university of mazandaran
Abstract
Nowadays, cold atmospheric pressure plasmas are used as an efficient method in food industries. The advantage of plasma method compared to other method are high productivity, cost-effectiveness and reduction of harmful chemical pollutants. In this study, cold atmospheric

pressure dielectric barrier discharge plasma in surface and volumetric treatment mode was produced, and its effect on the physical and chemical properties of saffron was investigated. For this purpose, after the production and characterization of plasma structures including electrode structure, electrical properties and optical emission spectroscopy, the influence of these structures on the physical and chemical properties of saffron was investigated. At first, the effect of surface and volumetric plasma treatment on degradation of Escherichia coli bacteria was investigated. The results showed that surface dielectric barrier discharge plasma treatment with high treatment time has a great effect on inactivation of Escherichia coli. Then, the effect of surface and volume treatments on the main properties of saffron including crocin, picrocrocin and safranal were investigated. The results showed that surface and volumetric plasma treatment increase the main properties of saffron,surprisingly. Finally, the effect of surface and volumetric plasma treatments on increasing harmful substance in saffron including nitrate and ammonium was investigated. The results showed that volumetric treatment of plasma due to direct processing increase the harmful substances in saffron, including nitrate and ammonium. According to the results of this research, it can be concluded that the dielectric barrier discharge in surface treatment mode has advantages against volumetric treatment. The latter suffers from harmful by-products. In this regard, the surface treatment of saffron is preferable to volumetric
Keywords

Subjects


[1] Wakefield, J., McComb, K., Ehtesham, E., Van Hale, R., Barr, D., Hoogewerff, J., & Frew, R. (2019). Chemical profiling of saffron for authentication of origin. Food Control, 106, 106699.
[2] Garavand, F., Rahaee, S., Vahedikia, N., & Jafari, S. M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology, 89, 26-44.
[3] Asimopoulos, N., Parisses, C., Smyrnaios, A., & Germanidis, N. (2013). Autonomous vehicle for saffron harvesting. Procedia Technology, 8, 175-182.
[4] Carmona, M., Martinez, J., Zalacain, A., Rodriguez-Mendez, M. L., de Saja, J. A., & Alonso, G. L. (2006). Analysis of saffron volatile fraction by TD–GC–MS and e-nose. European Food Research and Technology, 223(1), 96-101.
[5] Hosseini, S. I., Farrokhi, N., Shokri, K., Khani, M. R., & Shokri, B. (2018). Cold low pressure O2 plasma treatment of Crocus sativus: An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food chemistry, 257, 310-315.
[6] Maggi, L., Carmona, M., Kelly, S. D., Marigheto, N., & Alonso, G. L. (2011). Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas)–preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chemistry, 128(2), 543-548.
[7] Moghaddam, A. D., Garavand, F., Razavi, S. H., & Talatappe, H. D. (2018). Production of saffron-based probiotic beverage by lactic acid bacteria. Journal of Food Measurement and Characterization, 12(4), 2708-2717.
[8] Amini, M., Ghoranneviss, M., & Abdijadid, S. (2017). Effect of cold plasma on crocin esters and volatile compounds of saffron. Food chemistry, 235, 290-293.
[9] Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., ... & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123.
[10] Mastromatteo, M., Danza, A., Conte, A., Muratore, G., & Del Nobile, M. A. (2010). Shelf life of ready to use peeled shrimps as affected by thymol essential oil and modified atmosphere packaging. International journal of food microbiology, 144(2), 250-256.
[11] Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in food science & technology, 48, 51-62.
[12] Peng, P., Chen, P., Zhou, N., Schiappacasse, C., Cheng, Y., Chen, D., ... & Hatzenbeller, R. (2020). Packed food and packaging materials disinfected by cold plasma. In Advances in Cold Plasma Applications for Food Safety and Preservation, 269-286
[13] Misra, N. N., Yepez, X., Xu, L., & Keener, K. (2019). In-package cold plasma technologies. Journal of Food Engineering, 244, 21-31
[14] Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O'donnell, C. P., Bourke, P., ... & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35, 5-17.
[15] Ekezie, F. G. C., Sun, D. W., & Cheng, J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46-58.
[16] Amirabadi, S., Milani, J. M., & Sohbatzadeh, F. (2020). Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids, 104, 105724.
[17] Sakudo, A., Misawa, T., & Yagyu, Y. (2020). Equipment design for cold plasma disinfection of food products. In Advances in Cold Plasma Applications for Food Safety and Preservation, 289-307
[18] Rashid, F., Bao, Y., Ahmed, Z., & Huang, J. Y. (2020). Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Research International, 138, 109776.
[19] Chen, Y., Chen, G., Wei, R., Zhang, Y., Li, S., & Chen, Y. (2019). Quality characteristics of fresh wet noodles treated with nonthermal plasma sterilization. Food chemistry, 297, 124900.
[20] Misra, N. N., Yadav, B., Roopesh, M. S., & Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18, 106-120.
[21] Tolouie, H., Mohammadifar, M. A., Ghomi, H., Yaghoubi, A. S., & Hashemi, M. (2018). The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innovative Food Science & Emerging Technologies, 47, 346-352.
[22] Sohbatzadeh, F., Mirzanejhad, S., Shokri, H., & Nikpour, M. (2016). Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. Journal of Theoretical and Applied Physics, 10, 99-106
]23[ حاجی زاده، ایمان، (1396)، بررسی پلاسمای فشار اتمسفری بر روی خواص فیزیکی و شیمیایی زعفران، پایان نامه کارشناسی ارشد در رشته مهندسی پلاسما، دانشگاه مازندران، بابلسر، استاد راهنما : فرشاد صحبت زاده
]24[ خواجوند صالحان، محسن(1398)، بررسی پسماندهای شیمیایی ناشی از اثر پلاسمای سرد بر روی زعفران ، پایان نامه کارشناسی ارشد در رشته فیزیک پلاسما، دانشگاه مازندران، بابلسر استاد راهنما : فرشاد صحبت زاده
[25] Nair, S. C., Kurumboor, S. K., & Hasegawa, J. H. (1995). Saffron chemoprevention in biology and medicine: a review. Cancer Biotherapy & Radiopharmaceuticals, 10, 257-264.
[26] Xuan, B., ZHOU, Y. H., Li, N. A., MIN, Z. D., & CHIOU, G. C. (1999). Effects of crocin analogs on ocular blood flow and retinal function. Journal of ocular pharmacology and therapeutics, 15, 143-152.
[27] Gresta, F., Lombardo, G. M., Siracusa, L., & Ruberto, G. (2008). Saffron, an alternative crop for sustainable agricultural systems. A review. Agronomy for Sustainable Development, 28, 95-112.
[28] Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., ... & Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111, 12246-12251.
[29] ISO 3632/TS-1, 2 Saffron (Crocus satiVus L.) Part 1: Specifications, Part 2: Test Methods; ISO: Geneva, Switzerland, 2003.
[30] Sohbatzadeh, F., Shafei, F., Shakerinasab, E., Salehan, M. K., & Ghasemi, M. (2020). Roll-to-roll treatment of silk thread by a compact, single-step cold atmospheric plasma: hydrophobicity and mechanical properties. Applied Physics A, 126, 1-13.
[31] Sohbatzadeh, F., Farhadi, M., & Shakerinasab, E. (2019). A new DBD apparatus for super-hydrophobic coating deposition on cotton fabric. Surface and Coatings Technology, 374, 944-956.