تعیین سینتیک خشک‌کردن موسیر تحت یک روش پیشنهادی ترکیبی ماکروویو–هوای داغ و بررسی اثر شرایط عملیاتی بر پارامترهای رنگی آن

نویسندگان
1 گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور دزفول،
2 گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور دزفول
چکیده
موسیر از جمله مهم‌ترین گیاهان بومی ایران می‌باشد که به دلیل خواص درمانی بسیاری که دارد از دیرباز در سبد غذایی مردم جایگاه ویژه‌ای دارد. تاثیر روش پیشنهادی ترکیبی مایکروویو– هوای گرم بر سینتیک و خواص ظاهری موسیر مورد بررسی قرار گرفت. در روش پیشنهادی، پس از ایجاد امواج مایکروویو (600، 750 و 900 وات) نمونه‌ها تحت فرآیند خشک‏کردن ترکیبی امواج مایکروویو و هوای گرم قرار گرفتند. نتایج نشان داد که مدل لگاریتمی با داشتن مقادیر 996/0R2= و 002/0RMSE= بهترین مدل برای مدل‏کردن سینتیک خشک‏کردن برش‌های موسیر تحت روش پیشنهادی بود. به علاوه تحلیل منحنی‌های خشک شدن نشان داد که افزایش توان مایکروویو موجب کاهش مدت زمان خشک شدن و افزایش سرعت فرآیند شد و در قسمت ترکیبی نیز تاثیر توان مایکروویو به دلیل انرژی بالاتر غالب بود. نقطه‌ی بهینه‌ی عملیاتی برای دستیابی به کم‌ترین میزان رطوبت و حداقل زمان خشک کردن در شوک 900 وات و شرایط ترکیبی 450 وات و دمای80 درجه سانتی‏گراد رخ داد. افزایش توان مایکروویو سبب افزایش ضریب نفود موثر از 8-10×167/0 به 8-10×283/0 متر مربع بر ثانیه و کاهش متوسط انرژی فعال سازی از 429/17 به 074/2 کیلوژول بر مول شد. بهینه‌ی شرایط عملیاتی از لحاظ کیفیت ظاهری (رنگ‌سنجی) مربوط به خشک‏کردن با توان مایکروویو 900 وات و شرایط ترکیبی 450 وات و 80 درجه سانتیگراد بود که این نقطه به عنوان نقطه بهینه معرفی شد. در مجموع روش ترکیبی پیشنهادی نسبت به روش مایکروویو تنها، روشی موثر برای حفظ ویژگی‌های کیفی محصول بوده است و استفاده از آن در خشک‏کردن موسیر توصیه می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Determination of drying kinetics of Allium stipitatum under a proposed combined microwave-hot air method and investigation of effect of operating conditions on its color parameters

نویسندگان English

Safoora Karimi 1
Fatemeh Bibak 2
Narges Layeghiniya 2
Habibollah Abbasi 1
1 Department of Chemical Engineering, Jundi-Shapur University of Technology
2 Department of Chemical Engineering. Jundi-Shapur University of Technology
چکیده English

Allium stipitatum is one of the most important plants native to Iran, which has a special position in food basket of people because of its many healing properties. In this study, effect of a proposed combined microwave-hot air method on kinetics and physical properties of Allium stipitatum was investigated. In the proposed method, after applying microwaves (600, 750 and 900W), samples were subjected to combined microwave-hot air drying process. Results showed that Logarithmic model with values of R2 =0.996 and RMSE=0.002 was the best one to model drying kinetics of Allium stipitatum slices under the proposed method. In addition, drying curves analysis showed that the more microwave power, the less drying time and the more process rate. Moreover, in the combined section, effect of microwave power will be dominant due to higher energy. The optimum operating point to achieve the lowest moisture content and drying time ocuured at primary power of 900W and combined conditions of 450W at 80°C. Increasing microwave power increased effective moisture diffusivity from 0.167×10-8 to 0.283×10-8 m2/s and decreased average activation energy from 17.429 to 2.074 kJ/mol. The optimum operating conditions in terms of appearance quality (colorimetry) were related to drying at microwave power of 900W and combined conditions of 450W and 80°C, which was introduced as proposed optimum point. In general, the proposed combined method compared to microwave method alone, was an efficient method in ordrt to keep the product quality characteristics and its use in drying Allium stipitatum is recommended.

کلیدواژه‌ها English

Color Parameters
Drying kinetics
combined microwave-hot air drying
Allium stipitatum
[1] Hanelt, P., Schultze-Motel, J., Fritsch, R., Kruse, J., Maass, H.I., Ohle, H. and Pistrick, K. .1992. Infrageneric grouping of Allium-the Gatersleben approach (No. RESEARCH). Institute of Plant Genetics and Crop Plant Research.
[2] Lorigooini, Z., Kobarfard, F. and Ayatollahi, S.A., 2014. Anti-platelet aggregation assay and chemical composition of essential oil from Allium atroviolaceum Boiss growing in Iran. International Journal of Biosciences (IJB), 5(2).
[3] Rose, P., Whiteman, M., Moore, P.K. and Zhu, Y.Z., 2005. Bioactive S-alk (en) yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Natural product reports, 22(3), pp.351-368.
[4] EBRAHIMI, R., Zamani, Z.A., Kashi, A.A.K. and JABARI, A., 2008. Comparison of fatty acids, mineral elements of 17 Iranian shallot landraces (Allium hirtifolium Boiss.).
[5] Asgari, S., Ansari Samani, R., Deris, F., Shahinfard, N., Salimi, M., Mortazaei, S., Asgharzadeh, S., Shirzad, H. and Rafieian-kopaei, M., 2012. Antioxidant activity and the lowering effect of hydroalcoholic extract of Allium hirtifolium boisson some haemostatic factors in hypercholesterolemic rabbits. Journal of Mazandaran University of Medical Sciences, 22(91), pp.40-48.
[6] Sedighi, M., Rafieian-Kopaei, M. and Noori-Ahmadabadi, M., 2012. Effect of Allium ampeloprasum on ileum function: Involvement of beta-adrenergic receptors and voltage dependent calcium channels. LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 9(4), pp.1660-1667.
[7] Azadi, H.G., Ghaffari, S.M., Riazi, G.H., Ahmadian, S. and Vahedi, F., 2008. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines. Cytotechnology, 56(3), pp.179-185.
[8] Lorigooini, Z., Ayatollahi, S.A., Amidi, S. and Kobarfard, F., 2015. Evaluation of anti-platelet aggregation effect of some Allium species. Iranian journal of pharmaceutical research: IJPR, 14(4), p.1225.
[9] Fasihzadeh, S., Lorigooini, Z. and Jivad, N., 2016. Chemical constituents of Allium stipitatum regel (Persian shallot) essential oil. Der Pharmacia Lettre, 8(1), pp.175-180.
[10] Moghim, H., Taghipoor, S., Shahinfard, N., Kheiri, S. and Rafieian, S., 2014. Antifungal effects of Allium ascalonicum, Marticaria chamomilla and Stachys lavandulifolia extracts on Candida albicans. Journal of HerbMed Pharmacology, 3.
[11] Kazemi, S., Asgary, S., Moshtaghian, J., Rafieian, M., Adelnia, A. and Shamsi, F., 2010. Liver-protective effects of hydroalcoholic extract of allium hirtifolium boiss. In rats with alloxan-induced diabetes mellitus. Arya Atherosclerosis, 6(1), p.11.
[12] Jafarian, A., Ghannadi, A. and Elyasi, A., 2010. The effects of Allium hirtifolium Boiss. on cell-mediated immune response in mice. Iranian Journal of Pharmaceutical Research, (1), pp.51-55.
[13] Shirzad, H., Taji, F. and Rafieian-Kopaei, M., 2011. Correlation between antioxidant activity of garlic extracts and WEHI-164 fibrosarcoma tumor growth in BALB/c mice. Journal of medicinal food, 14(9), pp.969-974.
[14] El-Sebaii, A.A. and Shalaby, S.M., 2012. Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews, 16(1), pp.37-43.
[15] Luchese, C.L., Gurak, P.D. and Marczak, L.D.F., 2015. Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT-Food Science and Technology, 63(2), pp.1128-1136.
[16] Nadi, F., Rahimi, G.H., Younsi, R., Tavakoli, T. and Hamidi-Esfahani, Z., 2012. Numerical simulation of vacuum drying by Luikov's equations. Drying Technology, 30(2), pp.197-206.
[17] Onwude, D.I., Hashim, N. and Chen, G., 2016. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, pp.132-145.
[18] Sagar, V.R. and Kumar, P.S., 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of food science and technology, 47(1), pp.15-26.
[19] Moses, J.A., Norton, T., Alagusundaram, K. and Tiwari, B.K., 2014. Novel drying techniques for the food industry. Food Engineering Reviews, 6(3), pp.43-55.
[20] Chen, D., Xing, B., Yi, H., Li, Y., Zheng, B., Wang, Y. and Shao, Q., 2020. Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus L.). LWT, 120, p.108913.
[21] Shen, L., Wang, L., Zheng, C., Liu, C., Zhu, Y., Liu, H., Liu, C., Shi, Y., Zheng, X. and Xu, H., 2020. Continuous microwave drying of germinated brown rice: Effects of drying conditions on fissure and color, and modeling of moisture content and stress inside kernel. Drying Technology, pp.1-29.
[22] Brown, Z.K., Fryer, P.J., Norton, I.T., Bakalis, S. and Bridson, R.H., 2008. Drying of foods using supercritical carbon dioxide—Investigations with carrot. Innovative food science & emerging technologies, 9(3), pp.280-289.
[23] Sharma, G.P., Verma, R.C. and Pathare, P., 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of food engineering, 71(3), pp.282-286.
[24] Sabarez, H.T., Gallego-Juarez, J.A. and Riera, E., 2012. Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30(9), pp.989-997.
[25] Fernandes, F.A., Linhares Jr, F.E. and Rodrigues, S., 2008. Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), pp.1049-1054.
[26] Zhao, G., Hu, C. and Luo, H., 2020. Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder. Journal of Food Measurement and Characterization, pp.1-10.
[28] Mousa, N. and Farid, M., 2002. Microwave vacuum drying of banana slices. Drying Technology, 20(10), pp.2055-2066.
[28] Kudra, T. and Mujumdar, A.S., 2009. Advanced drying technologies. CRC press.
[29] Wang, H., Duan, X., Duan, L. and Ren, G., 2019. Mutual transformation of the water binding state and moisture diffusion characteristics of Chinese yams during microwave freeze drying. Drying Technology, pp.1-11.
[30] Zhang, M., Tang, J., Mujumdar, A.S. and Wang, S., 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17(10), pp.524-534.
[31] Xu, W., Cao, X., Zhu, G., Xia, Z. and Wang, D., 2020. Effect of temperature difference on the aroma and quality of carrots processed through microwave drying combined with hot air drying. Food and Bioproducts Processing, 120, pp.58-68.
[32] Palamanit, A., Sugira, A.M., Soponronnarit, S., Prachayawarakorn, S., Tungtrakul, P., Kalkan, F. and Raghavan, V., 2019. Study on quality attributes and drying kinetics of instant parboiled rice fortified with turmeric using hot air and microwave-assisted hot air drying. Drying Technology.
[33] Varith, J., Dijkanarukkul, P., Achariyaviriya, A. and Achariyaviriya, S., 2007. Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81(2), pp.459-468.
[34] Pan, Z. and McHugh, T., US Department of Agriculture, 2006. Novel infrared dry blanching (IDB), infrared blanching, and infrared drying technologies for food processing. U.S. Patent Application 10/917,797.
[35] Argyropoulos, D., Heindl, A. and Müller, J., 2011. Assessment of convection, hot‐air combined with microwave‐vacuum and freeze‐drying methods for mushrooms with regard to product quality. International journal of food science & technology, 46(2), pp.333-342.
[36] Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K. and Li, C., 2019. Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, pp.67-76.
[37] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J. and Hu, X., 2007. Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), pp.39-46.
[38] Bruce, D.M., 1985. Exposed-layer barley drying: three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research, 32(4), pp.337-348.
[39] Hendorson, S.M., 1961. Grain drying theory (I) temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), pp.169-174.
[40] Page, G.E., 1949. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers.
[41] Akpinar, E.K. and Toraman, S., 2016. Determination of drying kinetics and convective heat transfer coefficients of ginger slices. Heat and Mass Transfer, 52(10), pp.2271-2281.
[42] Yagcioglu, A.D.A.C.F., 1999. Drying characteristic of laurel leaves under different conditions. In Proceedings of the 7th International congress on agricultural mechanization and energy, 1999 (pp. 565-569). Faculty of Agriculture, Cukurova University.
[43] Sharaf-Eldeen, Y.I., Blaisdell, J.L. and Hamdy, M.Y., 1980. A model for ear corn drying. Transactions of the ASAE, 5(4), pp.1261-1265.
[44] Verma, L.R., Bucklin, R.A., Endan, J.B. and Wratten, F.T., 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), pp.296-0301.
[45] Wang, C.Y. and Singh, R.P., 1978. Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineers, 11(6), pp.668-672.
[46] Karathanos, V.T., 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), pp.337-344.
[47] Kaveh, M., Chayjan, R.A. and Nikbakht, A.M., 2017. Mass transfer characteristics of eggplant slices during length of continuous band dryer. Heat and Mass Transfer, 53(6), pp.2045-2059.
[48] Lemus‐Mondaca, R., Vega‐Gálvez, A., Moraga, N.O. and Astudillo, S., 2015. Dehydration of S tevia rebaudiana B ertoni Leaves: Kinetics, Modeling and Energy Features. Journal of Food Processing and Preservation, 39(5), pp.508-520.
[49] Doymaz, I., Kipcak, A.S. and Piskin, S., 2015. Characteristics of thin-layer infrared drying of green bean. Czech Journal of Food Sciences, 33(1), pp.83-90.
[50] Azimi-Nejadian, H. and Hoseini, S.S., 2019. Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), pp.2921-2930.
[51] Crank, J., 1975. Methods of solution when the diffusion coefficient is constant. The mathematics of diffusion, 2, pp.11-27.
[52] Darvishi, H., Khoshtaghaza, M.H. and Minaee, S., 2014. Fluidized bed drying characteristics of soybeans. Journal of Agricultural Science and Technology, 16(5), pp.1017-1031.
[53] Süfer, Ö., Sezer, S. and Demir, H., 2017. Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41(6), p.e13239.
[54] Therdthai, N. and Zhou, W., 2009. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), pp.482-489.
[55] Kesbi, O.M., Sadeghi, M. and Mireei, S.A., 2016. Quality assessment and modeling of microwave-convective drying of lemon slices. Engineering in agriculture, environment and food, 9(3), pp.216-223.
[56] Abbasi, H., Layeghinia, N., Bibak., F., and Karimi., S., 2020. Investigation of the mass transfer and drying kinetics of shallot by microwave method. Biosystem Enginrring, (in press) .[full text in Persian]
[57] Amiri Chayjan, R., Kaveh, M. and Khayati, S., 2015. Modeling drying characteristics of hawthorn fruit under microwave‐convective conditions. Journal of Food Processing and Preservation, 39(3), pp.239-253.
[58] Torki-Harchegani, M., Ghanbarian, D., Pirbalouti, A.G. and Sadeghi, M., 2016. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews, 58, pp.407-418.
[59] Olanipekun, B.F., Tunde‐Akintunde, T.Y., Oyelade, O.J., Adebisi, M.G. and Adenaya, T.A., 2015. Mathematical modeling of thin‐layer pineapple drying. Journal of food processing and preservation, 39(6), pp.1431-1441.
[60] Horuz, E., Bozkurt, H., Karataş, H. and Maskan, M., 2018. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect. Heat and Mass Transfer, 54(2), pp.425-436.
[61] Zheng, D.J., Cheng, Y.Q., Liu, H.J. and Li, L.T., 2011. Investigation of EHD-enhanced water evaporation and a novel empirical model. International Journal of Food Engineering, 7(2).
[62] Torki-Harchegani, M., Ghanbarian, D. and Sadeghi, M., 2015. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat and mass transfer, 51(8), pp.1121-1129.
[63] Zogzas, N.P., Maroulis, Z.B. and Marinos-Kouris, D., 1996. Moisture diffusivity data compilation in foodstuffs. Drying technology, 14(10), pp.2225-2253.
[64] Darvishi, H., Mohamamdi, P., Azadbakht, M. and Farhudi, Z., 2018. Effect of different drying conditions on the mass transfer characteristics of kiwi slices. Journal of Agricultural Science and Technology, 20(2), pp.249-264.
[65] Corrêa, P.C., Oliveira, G.H.H., Botelho, F.M., Goneli, A.L.D. and Carvalho, F.M., 2010. Mathematical modeling and determination of thermodynamic properties of coffee (Coffea arabica L.) during the drying process. Revista Ceres, 57(5), pp.595-601.
[66] Tulek, Y., 2011. Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer.
[67] Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M. and Tohidi, M., 2016. Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer, 52(2), pp.281-289.
[68] Demiray, E. and Tulek, Y., 2014. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer, 50(6), pp.779-786.
[69] Aghbashlo, M. and Samimi-Akhijahani, H., 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), pp.2865-2871.
[70] Heshmati., KH., Moghadas., S., 2017. Application of intermittent microwave – convective hot air technique on quality and nutritional characteristics of dried kiwi slices. Food industry research, 27(1), pp.111-126. [full text in Persian]
[71] Izli, N. and Polat, A., 2019. Effect of convective and microwave methods on drying characteristics, color, rehydration and microstructure properties of ginger. Food Science and Technology, 39(3), pp.652-659.
[72] Cui, Z.W., Xu, S.Y. and Sun, D.W., 2003. Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying technology, 21(7), pp.1173-1184.