تاثیر روش‌های مختلف خشک کردن بر ترکیب شیمیایی و ویژگیهای ضداکسایشی عصاره متانولی برگ زیتون

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
2 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
چکیده
مصرف برگ زیتون، از یک سو به علت پتانسیل ضداکسایشی و از سوی دیگر به علت کاربرد در داروسازی و طب مورد توجه واقع شده است. هدف از این پژوهش، بررسی تاثیر روش‌های مختلف خشک کردن سنتی، شامل آون با دماهای 60 و 105 درجه سانتی‌گراد، سایه، مایکروویو با توان‌های 400 و 700 وات، بر ویژگی­های عصاره متانولی برگ زیتون، بود. فعالیت ضداکسایشی عصاره برگ زیتون با آزمون‌های سنجش قدرت مهارکنندگی رادیکالDPPH ، آزمون رادیکال کاتیون ABTS و قدرت احیاکنندگی آهن(FRAP) انجام شد و مقدار کل ترکیبات فنولی و فلاونوئید موجود در عصاره‌های برگ زیتون با روش­های فولین سیوکالتو و کلرید آلومینیوم تعیین گردید. ترکیبات برگ زیتون شامل رطوبت(17/55 %)، خاکستر(12/6 %)، چربی(18/3 %)، پروتئین(21/8 %)، کربوهیدرات نامحلول(74/18 %)، و کربوهیدرات کل(32/27 %) بود. نتایج نشان داد که اثر روش‌های مختلف خشک کردن بر ویژگی­های ضداکسایش و استخراج ترکیبات فنولی و فلاونوئیدی در برگ زیتون اثر معنی­داری (p≤0.05) دارند و با افزایش غلظت عصاره‌های مختلف، فعالیت ضد رادیکالی آن‌ها افزایش یافت. مهار رادیکال‌های آزاد برگ زیتون وابسته به غلظت هر کدام بود و بهترین روش خشک کردن، مربوط به خشک کردن توسط مایکروویو با توان 400 وات، و ضعیف‌ترین روش خشک کردن، مربوط به خشک کردن توسط آون 60 درجه سانتی‌گراد به دست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of different drying methods on chemical composition and antioxidant properties of methanolic extract of olive leaf

نویسندگان English

Leila Haghjoo 1
Hassan Barzegar 2
Hossein Jooyandeh 1
1 Agricultural Sciences and Natural Resources University of Khuzestan
2 Food Science and Technology Department, Agricultural Sciences and Natural Resources University of Khuzestan
چکیده English

Olive leaf consumption due to its antioxidant properties and several applications in medicine and pharmaceutical sciences is considered from ancient time. In this research effect of different drying methods including oven drying at 60 °C and 105 °C, microwave drying at 400 W and 700 W and shadow on methanolic extraction of olive leaf were evaluated. Antioxidant properties were assayed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS, and ferric reducing ability of plasma (FRAP) and also total phenolic and flavonoid content were measured using Folin-Ciocalteu and aluminum chloride respectively. Olive leaf contains 55.17% moisture, 6.12% ash, 3.18% fat, 8.21% protein, 8.58% polysaccharide, 18.48% insoluble carbohydrate, and 27.32% total carbohydrate. Results showed that drying method affect antioxidant properties and phenolic and flavonoid extraction significantly. By increasing the concentrations of extracts, their anti-radical activity increased and the radical scavenging ability of extracts depended on their concentration. Highest antioxidant property were seen in 400 W microwave and the lowest results were in oven drying at 60 °C.

کلیدواژه‌ها English

Antioxidant
Olive leaf
phenolic compounds
Drying
[1] Park, Y. K., Lee, W. K., Park, S. Y., Ahu, J. K. and Han, M. S. (2005). Antioxidant activity and total phenolic content of callistemon citrinus extract. Food Science & Biotechnol. 14, 212-215.
[2] Chen, G. L., Zhang, X., Chen, S. G., Han, M. D. and Gao, Y. Q. (2017). Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China. Journal of Functional Foods. 30, 290-302.
[3] Amarowicz, R., Naczk, M. and Shahidi, F. (2000). Antioxidant activity of various fractions of non-tannin phenolics of canola hulls. Journal of Agriculture & Food Chemistry. 48, 2755-2759.
[4] Hossain, M. B., Brunton, N. P., Barry-Ryan, C., Martin-Diana, A. B. and Wilkinson, M. (2008). Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan Journal of Chemistry. 1, 751-756.
[5] Hassanzadeh, K., Akhtari, K., Hassanzadeh, H., Zarei, S.A., Fakhraei, N., Hassanzadeh, K. (2014). The role of structural CAH comared with phenolic OH sites on the antioxidant activity of oleuropein and its derivatives as a great non-flavonoid family of the olive components: a DFT study. Food Chemistry. 164, 251- 258.
[6] Ataei, F., Keramat, J., Hojjatoleslami, M. and Mirlohi, M. (2013). Oleuropein content in olive leaves extract of sponge cake, Journal of Plant Medicines, 3(4): 257-262.
[7] Khalil, M. M. H., Ismail, E. H. and El-Magdoub, F. (2010). Biosynthesis of Au nanoparticles using olive leaf extract. Arabian Journal of Chemistry. 5,431-437.
[8] Azizi, M., Rahmati, M., Ebadi, M. T. and Hasanzadeh khayyat, M. (2009). The effect of different drying methods on weight loss rate essential oil and chamazolene contents of chamomile (Matricaria recutita) flowers. Iranian Journal of Medicinal & Aromatic Plants. 25(2): 182-192.
[9] Yazdani, D., Shahnazi, S., Jamshidi, A, H., Rezazadeh, Sh., A. and Mojab, F. (2005). Study on variation of essential oil quality and quantity in dry and fresh herb of Thyme and Tarragon. Journal of Medicinal Plants, 5(17): 7-15.
[10] Abdullah, S., Shaari, A. R. and Azimi, A. (2012). Effect of drying methods on metabolites composition of Misai Kucing (Ortosiphon stamineus) leaves. Sciverse Science Direct. 2: 178-182.
[11] Kamran, M., Hamlin, A. S., Scott, C. and Obied, H. ( 2015). Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Industrial crops and products. 78: 29-38.
[12] Dao-Mao, Y. and Ming-An, O. (2012). Antioxidation and anti-tyrosinase activity from Olea leaf extract depended on seasonal variations and chromatography treatment. International Journal of Organic Chemistry. 2: 391-397.
[13] Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A. and Sadeghi, M. (2016). Dehydration behavior, mathematical modeling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatment. Renewable & Sustainable Energy Reviews. 58: 407-418.
[14] Ahmad-Qasem, M. H., Ahamad-Qasem, B. H., Barrajo´n-Catala´n, E., Micol, V. and Garci´a-Pe´rez, J. V. (2015). Drying and storage of olive leaf extrscts. Influcnce on poly phenols stability. Industrial Crops & Products.74: 1-274.
[15] Taskin, M. and Erdal, S. (2011). Utilization of waste loquat (Eriobotrya japonica Lindl.) kernel extract for a new cheap substrate for fungal fermentations. Rom Biotechnol Lett. 16: 5872-5880.
[16] Shen, S., Chen, D., Li, X., Li, T., Yuan, M., Zhou, Y. and Ding, C. (2014). Optimization of extraction process andantioxidant activity of poly saccharides from of paris polyphylla. Carbohydrate polymers. 104:80-86.
[17] Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma as a measure of "antioxidant power" the FRAP assay. Analytical Biochemistry. 239: 70-79.
[18] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. A. (1999). Antioxidant capacity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 26:1231-1237.
[19] Cavalheiro, C. V., Picoloto, R. S., Cichoski, A. J., Wagner, R., Ragagnin de Menzes, C., Queiroz Zepka, L., Da Croce, D. M. and Smanioto Barin, J. (2015). Olive leaves offer more than phenolic compounds – fatty acids and mineral composition of varieties from Southern Brazil. Industrial crops and products. 71: 122-127.
[20] Keinänen, M. and Julkunen-Tiitto, R. (1996). Effect of sample preparation method onBirch (Betula pendula Roth) leaf phenolics. Journal of Agriculture & Food Chemistry. 44: 2724–2727.
[21] Rafiee, Z., Jafari, S. M., Alami, M. and Khomeiri, M. (2012). Antioxidant effect of microwave-assisted extracts of olive leaves on sunflower oil. Journal of Agriculture Science Technology. 14: 1497-1509.
[22] Ahmad-Qasem, M. H., Barrajo´n-Catala´n, E., Micol, V., Mulet, A. and Garci´a-Pe´rez, J. (2013). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International. 50: 189-196.
[23] Abdullah, S., Shaari, A. R. and Azimi, A. (2012). Effect of drying methods on metabolites composition of Misai kucing (Orthosiphon stamineus) leaves. Sciverse Science Direct. 2: 178-182.
[24] Manach, C., Scalbert, A., Morand, C., Re´me´sy, C. and Jime´enez, L. (2008). Food sources and bioavailability. American Journal of Clinical Nutrition. 79:727-747.
[25] Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., Hammami, M. (2012). The effect of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Industrial crops and products. 38, 146-152.
[26] Nashwa, F., Morsy, S. and Abdel-Aziz, M. E. (2014). Efficiency of olive (Olea europaea L.) leaf extract as antioxidant and anticancer agents. Journal of Agroalimentary Processes & Technology. 20(1): 46-53.
[27] Zhao, G., Zhang, R., Liu, L., Deng, Y., Wei, Z., Zhang, Y., Ma, Y. and Zhang, M. (2017). Different thermal drying methods effect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait). Hassk berries. LWT-Food Science & Technology. 79, 260-266.
[28] Valadez-Carmona, L., Pazola-Jacinto, C. P., Herna´ndez-Ortega, M., Herna´ndez-Navarro, M. D., Villarreal, F., Necoechea-Mondrago´n, H., Ortiz-Moreno, A. and Ceballos-Reyes, G. (2017). Effect of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies. 41: 378-386.