

Scientific Research

New formulation of frying oil based on sesame oil

Zahra Afshari^{*1}, Mohammad Rabbani², Mozghan Emtyazjoo

- 1- Master Student of Food Science and Technology, Majoring in Food Chemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Shahid Abbaspour Boulevard - Shahid Sadoughi Street- Hakimieh Exit- Shahid Babaei Highway (West to East), Tehran city, Tehran Province.
- 2- PhD, Assistant professor, Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Shahid Abbaspour Boulevard - Shahid Sadoughi Street- Hakimieh Exit- Shahid Babaei Highway (West to East), Tehran city, Tehran Province.
- 3- PhD, Professor, Department of Marine biology, Faculty of Marine Sciences and Technologies, North Tehran Branch, Islamic Azad University, Shahid Abbaspour Boulevard - Shahid Sadoughi Street- Hakimieh Exit- Shahid Babaei Highway (West to East), Tehran city, Tehran Province.

ARTICLE INFO

Article History:

Received: 2024/12/11

Accepted: 2025/05/14

Keywords:

Trans fatty acid,

Sesame oil,

Sunflower oil

Corn oil,

Peroxide Value.

DOI: 10.48311/fsct.2026.83946.0

*Corresponding Author E-

zariafshari73@gmail.com

ABSTRACT

Since sesame oil has higher oxidation stability than other vegetable oils, in this research, sesame oil was added to sunflower and corn frying oils to determine the effect of adding sesame oil on preventing the production of trans fatty acids during the frequency of frying. Epidemiological evidence and case-control studies show the relationship between the intake of trans fatty acids and the risk of various diseases. In this research, in addition to investigating the effect of adding sesame oil on preventing the production of trans fatty acids, the peroxide value test was performed. For this purpose, three oil treatments were prepared from sesame, corn, and sunflower oils. The first treatment contained 33% sunflower, 33% corn, and 33% sesame; the second treatment contained 25% sunflower, 50% corn, and 25% sesame; and the third treatment contained 50% sunflower, 25% corn, and 25% sesame. The measurement of trans fatty acids and peroxide values was done according to the national standard of Iran. The results showed that the amount of trans fatty acids decreased with increasing the number of times of frying. The amount of trans fatty acids after 21 times of frying was 1.243% in the first treatment, 1.184% in the second treatment, and 1.022% in the third treatment. As a result, the third treatment was the most resistant oil mixture against the formation of trans fatty acids. In the peroxide test, the amount of peroxide value increased with increasing the number of frying times (more than 5). The best oil mixture against oxidative spoilage was the first treatment and then the second treatment.

1-Introduction

Heating, frying, and reusing edible oils and fats cause an isomerization reaction in the oil, during which the trans fatty acid isomer is produced from cis-unsaturated linkages [1]. Trans fatty acids are unsaturated fatty acids containing a non-conjugated carbon-carbon double bond in the trans configuration. [2].

Epidemiological studies¹ It has been shown that excessive consumption of trans fatty acids increases cholesterol levels LDL² and lipoprotein A and reduces the concentration level HDL³ They get into the blood [2 and 3]. Kamro et al. (2004) have shown that consumption of trans fats prevents the metabolic conversion of linoleic acid to arachidonic acid and other polyunsaturated fatty acids. (PUFAs⁴) Prevents, which is a risk factor for developing coronary heart disease [4] It is reported that the consumption increase is 2%. TFA⁵ Increases the risk of cardiovascular disease by 23%. [5]. Due to the adverse effects of excessive consumption TFA_S On health, some countries, with the aim of informing consumers, place content TFA_S They suggested processed foods on the label. [6]. A systematic review from 1980 to 2012 showed that mandatory food labeling laws indicating the amount of trans fatty acids in a food and limiting TFA_I in food, it can cause a decrease TFA_R and reported in food, it also reduces the availability of food sources and seems to encourage food manufacturers to reformulate their products. [7].

Formation rate TFA_S When frying, it depends on the frying temperature, the number of times you fry, and whether or not you add fresh oil. Increasing the temperature and frying time increases the formation of TFA_S Therefore, in some European countries it is recommended that frying temperatures, whether on an industrial or

small scale, do not exceed 180 degrees Celsius. [1]. Also TFA_S They are found naturally in many foods, such as meat and dairy, at low levels. Although TFA_S They cannot be completely eliminated from food sources, but their levels can be reduced. TFA_S reduced industrial. Worldwide, guidelines indicate that consumption TFA_S should be limited to less than 1% to 2% of total dietary energy [8 and 9]. Given the formation of trans fatty acids due to heating oil at high temperatures and the harmful effects of consuming trans fatty acids on human health, it is necessary to reduce the production of trans fatty acids in oil at high temperatures.

Sesame seed oil has a higher oxidation stability than other vegetable oils, which is not only related to the antioxidant activities of its intrinsic lignans and tocopherols, but also attributed to the products produced by the browning reaction during sesame seed roasting. Lignans in sesame seed oil can be divided into two categories, namely intrinsic lignans, which include sesamin, sesamolin, and lignans that are mainly formed during the oil production process, which include sesamol, sesaminol, etc. The most abundant tocopherol in sesame seed oil is gamma-tocopherol. Due to the presence of these phenolic compounds in sesame seed oil, this oil acts in a way that prevents oxidation. [10]. A study showed that sesamol (found in sesame oil) and resveratrol, an exogenous antioxidant, had a specific inhibitory effect on the formation of isomerization products in peanut oil heated to 180°C. [11]. The purpose of this study is to investigate the effect of adding sesame oil to frying oils to prevent the formation of trans isomers during the frying process. In this study, in addition to the aforementioned study, we investigated the

1- Epidemiological

2- Low - density lipoprotein

3-High - density lipoprotein

4- Polyunsaturated fatty acids

5- Trans Fatty Acids, TFA_S

effect of adding sesame oil to frying oils on peroxide value.

2- Materials and methods

2-1- Methods

2-1-1- Formulation of frying oils

Initially, sesame, corn and sunflower oils were purchased from the market, then 3 oil treatments were prepared using different amounts of sesame, corn and sunflower oils. According to Table 1, the research treatments were obtained for all three independent variables (in values of 0 to

100%). Each treatment was fried for three days without adding fresh oil. The frying process was performed seven times per day. In fact, in each frying process, 100 grams of frozen half-fried potatoes were fried in it (7 series per day). The time interval between each frying process was 00:45 minutes. In total, the frying process took 5:30 hours per day. Frying each oil at a temperature of 5±180 degrees Celsius; at the end of each day, the oil remaining in the fryer was filtered by sieve, then sampled for tests related to determining the trans fatty acid profile and the test Peroxide number should be done on them.

Table 1. Research treatments

Run	Sesame	Corn	Sunflower
1	%33.33	%33.33	%33.33
2	%25.0	%50.0	%25.0
3	%25.0	%25.0	%50.0

2-1-2 - Measurement of trans fatty acids in frying oils

MeasurementTFA_SIn frying oils, according to the Iranian National Standard No. 13126-2 and 13126-4, gas chromatography was performed [12 and 13]. Tests related to determining the trans fatty acid profile were performed at the end of the first day, at the end of the second day, and at the end of the third day after frying on the treatments. All measurementsTFA₆It was carried out at Pars Minoo Industrial Company.

2-1-3-Measuring peroxide value in frying oils

Peroxide value measurement in frying oils was carried out according to Iranian National Standard No. 4179. [14]. Peroxide

value test was performed on the treatments at the end of the first day, at the end of the second day, and at the end of the third day after frying.

2-1-4- Determining the characteristics of primary oils

In order to compare the behavior of the raw oils with the treatments, all raw oils were initially sampled. Then, all raw oils, like the treatments, were fried seven times per day for three days. At the end of each day, samples were also taken from them. Finally, fatty acid profile and peroxide value tests were performed on all samples.

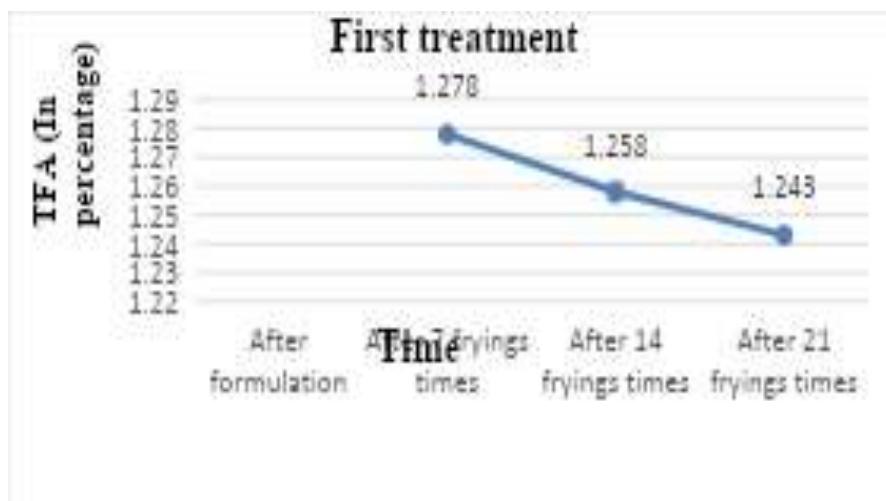
2-2- Materials

The consumables in this experiment are presented in Table 2 and the non-consumables in this experiment are presented in Table 3.

Table 2, consumables

Manufacturer company-Country	Type of consumable
Saman/ Iran	Pure sesame oil
Zar-oil/ Iran	Pure corn oil
Varamin/ Iran	Pure sunflower oil
Dr. Mojallali/ Iran	Glacial Acetic acid
Dr. Mojallali/ Iran	N-Hexane
Dr. Mojallali/ Iran	Potassium Iodide
Dr. Mojallali/ Iran	Sodium thiosulfate pentahydrate
Merck/ Germany	starch solution
AskingIndividual quick frozen French fries/ Iran	Individual Quick Frozen French Fries

Table 3, non-consumable materials


Model/company/country	Device name
Gas Chromatography Younglin ACME 6100/ South Korea	Gas chromatography device

3- Data from the research

3-1- Data from Trans Fatty Acid Measurements

Measurement data TFA In the first, second and third treatments, after 7 frying times, after 14 frying times and after 21 frying times, it is presented in graphs 1, 2 and 3.

Figure 1 shows the data from the measurement of trans fatty acids in the first treatment, after 7 frying times, after 14 frying times, and after 21 frying times.

Chart 1. Graph of the amount of trans fatty acids in the first treatment

First treatment: (mixed frying oil: 33% sunflower, 33% corn, 33% sesame)

Chart 2 The data from the measurement of trans fatty acids in the second treatment show that at the end of the first day, the end

of the second day, and the end of the third day after frying.

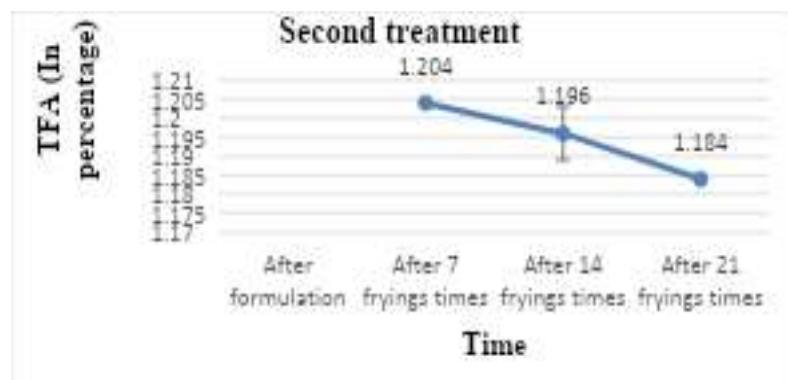


Chart 2. Graph of the amount of trans fatty acids in the second treatment

Second treatment: (mixed frying oil: 25% sunflower, 50% corn, 25% sesame)

Chart 3 The data from the measurement of trans fatty acids in the third treatment shows the levels at the end of the first day,

the end of the second day, and the end of the third day after frying.

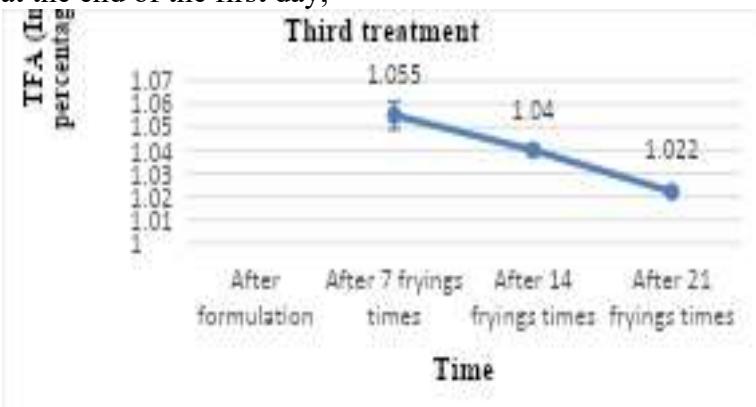
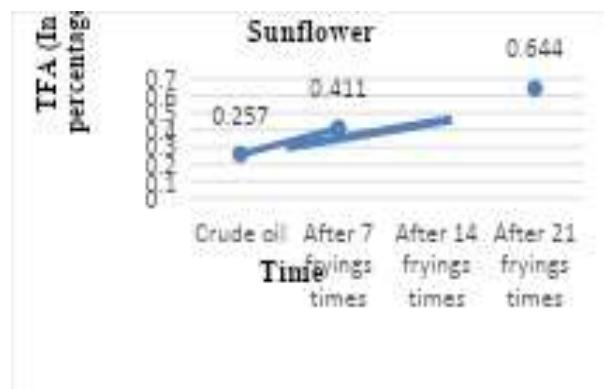


Chart 3. Graph of trans fatty acids in the third treatment


Third treatment: (mixed frying oil: 50% sunflower, 25% corn, 25% sesame)

3-1-4 The overall results obtained from examining the amount of TFA In the first, second and third treatments

As shown in graphs (1, 2 and 3), the amount of trans fatty acids decreases with increasing number of frying cycles. That is, the amount of trans fatty acids in the oil after 21 frying cycles is lower than the amount in the oil after 7 frying cycles. The highest amount of trans fatty acids was related to the first treatment (1.243%), and the lowest was related to the second treatment (1.184%) and the third treatment (1.022%). From these results, it can be concluded that the second treatment, which contains 25% sunflower, 50% corn and 25% sesame, and the third

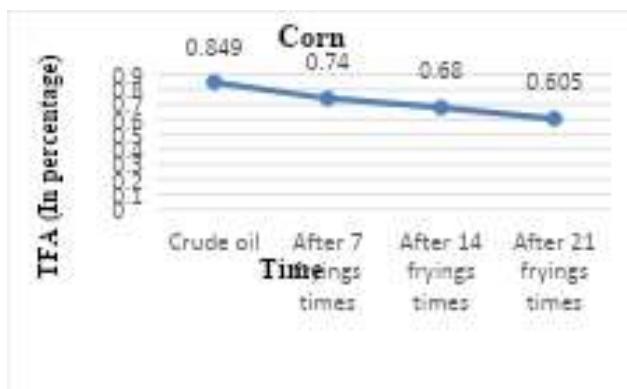

treatment, which contains 50% sunflower, 25% corn and 25% sesame, show greater resistance to the formation of trans fatty acids than the first treatment. The data obtained from the measurement of trans fatty acids in pure sesame, corn and sunflower oils, for crude oils, on the first and third day after frying, are presented in Figures 4, 5 and 6 (for brevity, the figures are omitted). GCWe have avoided.

Chart4 shows the data obtained from the measurement of trans fatty acids (in percent) in sunflower oil, in the crude oil, at the end of the first day and at the end of the third day after frying.

Chart 4. Graph of the amount of trans fatty acids in sunflower oil

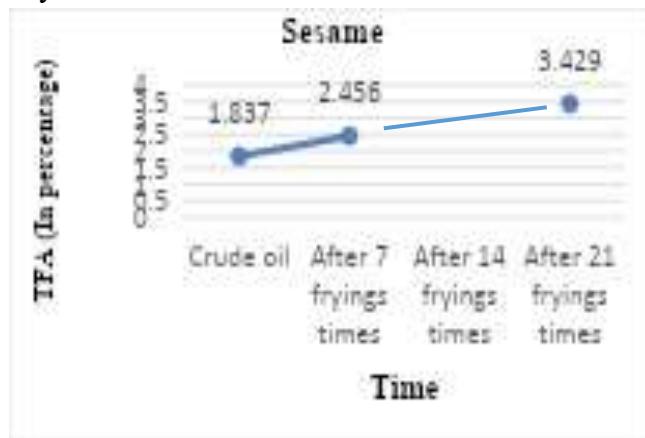

Chart 5 Data from the measurement of trans fatty acids in corn oil, in crude oil, at the end of the first day and at the end of the third day after frying.

Chart 5. Graph of trans fatty acids in corn oil

Chart 6 shows the data from the measurement of trans fatty acids in sesame

oil, in the crude oil, at the end of the first day and at the end of the third day after frying.

Chart 6. Graph of the amount of trans fatty acids in sesame oil

3-1-8 - General conclusion from the study of the amount of trans fatty acids in primary oils

As shown in graphs (4, 5, and 6), the amount of trans fatty acids in sunflower and sesame oil increases with increasing number of frying times (21 times), but the amount of trans fatty acids in corn oil decreases with increasing number of frying times. The amount of trans fatty acids in corn oil after 21 frying times is 0.605%, while this amount is 0.644% in sunflower oil and 3.429% in sesame oil. The decreasing trend in the formation of trans fatty acids in corn oil indicates that corn oil is more resistant to the formation of trans fatty acids than sunflower and sesame oils. After corn oil, sunflower

oil, The oil is resistant to the formation of trans fatty acids.

3-2- Results from the peroxide test

3-2-1- Results of the peroxide test in treatments

The data from the peroxide test in the first, second, and third treatments, after formulation, at the end of the first day, the end of the second day, and the end of the third day after frying, are presented in Figure (7).

Graphs from the peroxide test in the first, second, and third treatments:

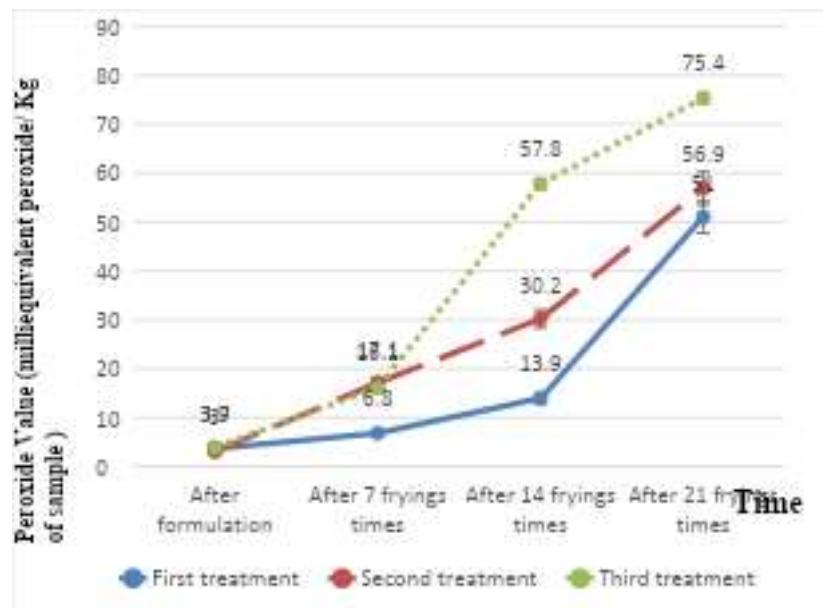


Chart 7. Peroxide value graph in the first, second and third treatments

First treatment: (mixed frying oil: 33% sunflower, 33% corn, 33% sesame)

Second treatment: (mixed frying oil: 25% sunflower, 50% corn, 25% sesame)

Third treatment: (mixed frying oil: 50% sunflower, 25% corn, 25% sesame)

As shown in the graphs above, the peroxide value increases with the number of frying cycles. After 21 frying cycles, the peroxide value was 51 in the first treatment, 56.9 in the

second treatment, and 75.4 milliequivalents of active oxygen per gram of sample in the third treatment.

Overall, the results showed that the first treatment, which contained 33.33%

sunflower, 33.33% corn, and 33.33% sesame, and the second treatment, which contained 25% sunflower, 50% corn, and 25% sesame, showed greater resistance to oxidative spoilage than the third treatment.

3-2-2- Results from peroxide test in primary oils

The data from the peroxide test in pure sunflower, corn and sesame oils, for crude oil, after 7 frying times, after 14 frying times and after 21 frying times, are presented in Figure (8).

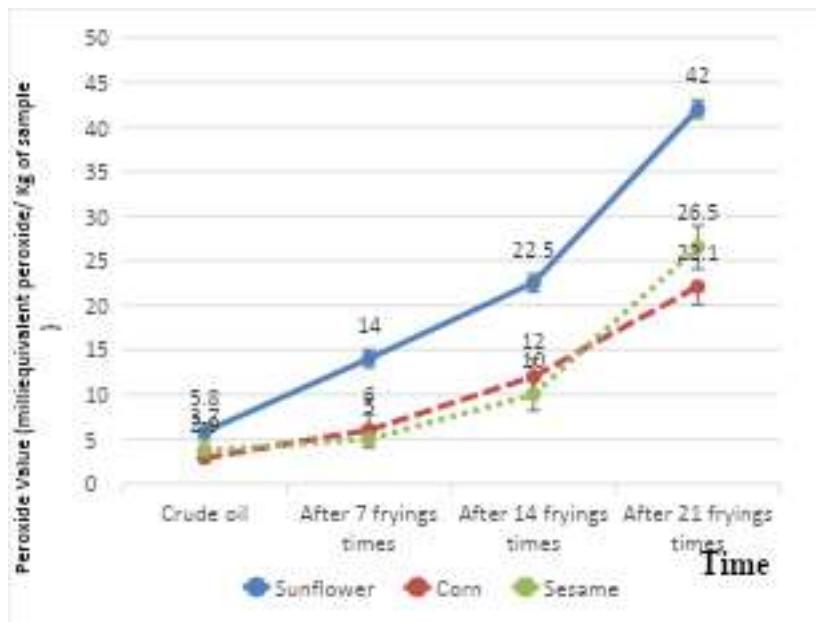


Chart 8. Peroxide value in graph sunflower, corn and sesame oil

As shown in the graphs above, the peroxide value increases with the number of frying cycles. After 21 frying cycles, the peroxide value was 42 in sunflower oil, 22.1 in corn oil, and 26.5 in sesame oil. Overall, the results showed that corn and sesame oils were more resistant to oxidative deterioration than sunflower oil.

4- Discussion and conclusion

4-1- Discussion

The amount of trans fatty acids at the end of the first day in the first treatment was 1.278%, in the second treatment was 1.204%, and in the third treatment was 1.055%. After 21 frying times, the amount of trans fatty acids at the end of the third day in the first treatment was 1.243%, in the second treatment was 1.184%, and in the third treatment was 1.022%. The findings

obtained from the measurement of trans fatty acids in the treatments showed that the amount of trans fatty acids decreases with increasing number of frying times. That is, the amount of trans fatty acids in the oil after 21 frying times is less than its amount in the oil after 7 frying times. As mentioned in the introduction, heating, frying, and reusing edible oils and fats causes an isomerization reaction in the oil, during which the trans fatty acid isomer is produced from cis-unsaturated bonds. [1]. Therefore, it was expected that the amount of trans fatty acids in the food would increase with increasing frying times, but the decreasing trend in the amount of trans fatty acid formation in the treatments raised a debate as to whether the high number of frying times causes the breakdown of trans fatty acids? Or, is the trans fatty acid absorbed into the food (potato with starchy structure) during the high number of frying times?

To answer this question, pure sesame, corn, and sunflower oils were fried without potatoes for three days (21 times), and samples were taken from the crude oils at the end of the first and third days, and their trans fatty acid levels were measured by the device. GC was investigated. The results of measuring trans fatty acids in pure sesame, corn and sunflower oils, in crude oils and on the third day after frying were as follows; The levels of trans fatty acids in pure sunflower, corn and sesame oils in crude oil were 0.257%, 0.849% and 1.837%, respectively. At the end of the third day after frying, the levels of trans fatty acids in pure sunflower, corn and sesame oils were 0.644%, 0.605% and 3.429%, respectively.

In this experiment, the amount of trans fatty acids in sunflower and sesame oils increased with increasing frying times, but the amount of trans fatty acids in corn oil decreased with increasing frying times. The decreasing trend in the rate of trans fatty acid formation in corn oil indicates that this oil is more resistant to trans fatty acid formation than sunflower and sesame oils.

The increasing trend of trans fatty acid formation in sunflower and sesame oil indicates that trans fatty acid is absorbed into the food (potato with starchy structure) during high frying times. As a result, trans fatty acid is not broken down during high frying times.

Numerous studies have been conducted by researchers regarding the formation of trans fatty acids during frying. took place, for example: In the year (2023) Manzooret al. investigated the effect of food type, oil type (soybean oil and mustard oil), and frying frequency on the formation of trans fatty acids in frying oils and in fried foods. When fish fillets were fried in soybean oil, the amount of TFA The first and third times after frying were 2.56% and 3.29%, respectively, and when the fish fillet was fried in mustard oil, the amount of TFA The first and third times after frying were 2.38% and 3.15%,

respectively. The results showed that the amount of TFA in fish fillets, the number of frying times increases, as does the amount of TFA after frying in soybean oil, it is higher than in mustard oil. Therefore, the composition of a food and the fatty acid composition of an oil play a key role in the formation of TFA during deep frying [17].

In the present study, the amount of trans fatty acids in pure oils increased with increasing number of frying times. Also, in the study Manzooret al. stated that the fatty acid composition of an oil plays a key role in the formation of trans fatty acids. This point is consistent with the present study, because in the present study, the amount of TFA after 21 frying cycles, it increased in two pure oils: sunflower and sesame, but it decreased in corn oil.

In the year (2024) Addo et al. conducted a case study on green banana chips sold within the Accra metropolitan area to investigate the factors affecting the occurrence of trans fatty acids in fried foods. Banana chips are produced using the deep frying method. In this study, 120 banana chips samples were statistically obtained from manufacturers and vendors in the Accra metropolitan area and the total fat concentration and the amount of trans fat were determined. TFA In addition, a comprehensive survey of 30 people who produced commercial banana chips was conducted through interviews. The fat content of banana chips ranged from 26g Up to 30g In 100g and concentration TFA Between 1.41g Up to 2.88g In 100g Fat and 0.41g Up to 0.78g In 100g Food items varied. Approximately 97% of commercial banana chip producers admitted to using an oil 4 or more times before discarding it. The results showed that oil reuse was a factor in the occurrence of TFA It is between meals [18].

ResearchAddo et al. is consistent with the present study. Reuse of edible oils as an effective factor in the occurrence of TFA is.

of the Year (2024) Largeet al. investigated the thermal stability of vegetable oils enriched with omega fatty acids during frying. The aim of this study was to evaluate changes in fatty acid composition and the formation of harmful compounds, such as: TFA. In this study, various commercially available vegetable oils containing omega-3, omega-6 and omega-9 fatty acids, such as high oleic sunflower oil, rapeseed oil and formulated oils containing two oils (high oleic sunflower and rapeseed) in different proportions, were investigated during different frying cycles at temperatures between 180 and 230°C. The data from the study showed a significant degradation of polyunsaturated fatty acids (PUFAs) and an increase in saturated fatty acids (SFAs). It also showed that the higher the number of frying times, the higher the TFA. The findings of the study indicated that different oils had different thermal stability. For example, high oleic sunflower oil and formulated oils (a blend of sunflower oil and rapeseed oil) showed higher thermal stability than regular sunflower oil [19].

Research Largeet al. is consistent with the present study. In the present study, increasing the number of frying times increased the amount of TFA. In addition, the findings from the research Largeet al., stated that different oils had different thermal stability, in the present study also different oils had different thermal stability. For example: corn oil compared to sesame and sunflower oil.

In the year (2023) Thatet al. studied the effect of resveratrol on inhibiting the production of heat-induced trans fatty acids in peanut oil. The results showed that the amount of resveratrol decreased with increasing temperature and excessive temperature caused its complete destruction. Resveratrol significantly inhibited the formation of TFA. It

is in peanut oil and the total inhibition rate TFA. It decreased with increasing temperature [20].

Considering that consuming trans fatty acids is harmful to health, their formation should be prevented, research Thatet al. present a suitable method for inhibiting the production of trans fatty acids.

In the year (2022) Bhatet al. conducted a systematic review to investigate the effect of heat on the formation of trans fatty acids in edible oils during cooking. The results showed that heating the oils at normal cooking temperatures ($\geq 200^{\circ}\text{C}$) has the least effect on production TFA. The whole was observed with prolonged heating at 200 to 240 degrees Celsius [21]. In the present study, the rate of trans fatty acid formation increased with increasing number of frying times in pure oils without potatoes.

4-2- Conclusion

In the study of the formation of trans fatty acids during frying, the third and second treatments showed greater resistance to trans fatty acid formation than the first treatment. The level of trans fatty acids at the end of the third day after frying was 1.243% in the first treatment, 1.184% in the second treatment, and 1.022% in the third treatment. Overall, the results showed that the best oil mixture in terms of resistance to trans fatty acid formation was the third treatment, which contained 50% sunflower, 25% corn, and 25% sesame. After the third treatment, the second treatment oil was resistant to trans fatty acid formation. The second treatment contained 25% sunflower, 50% corn, and 25% sesame.

In the peroxide test, the best mixture against oxidative spoilage was the first treatment, followed by the second treatment. The first treatment contained 33% sunflower, 33% corn, and 33% sesame. The trans fatty acid content in the pure sunflower, corn, and sesame oils, which were in raw form, was

0.257%, 0.849%, and 1.837%, respectively. The amount of trans fatty acids in corn oil after 21 frying times is 0.605%, while this amount is 0.644% in sunflower oil and 3.429% in sesame oil. The decreasing trend in the rate of trans fatty acid formation in corn oil indicates that this oil is more resistant to trans fatty acid formation than sunflower and sesame oils. Of course,

5-Resources

[1] Bhardwaj, S., Passi, S.J., Misra, A., Pant, K.K., Anwar, K., Pandey, R.M., and Kardam, V. (2016). "Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation". *Food Chemistry*, vol 212, pp. 663-670.

[2] Tavakoli, A., and Sahari, M-A. (2016). "Methods to reduce trans fatty acids in food". The first international congress and the 24th national congress of food sciences and industries of Iran. Tehran, <https://civilica.com/doc/574349>

[3] Mensink, R.P., and Katan, M.B. (1990). "Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects". *New England journal of medicine*, vol. 323, No. 7, pp. 439-445.

[4] Kummerow, F. A., Zhou, Q., Mahfouz, M. M., Smiricky, M. R., Grieshop, C. M., and Schaeffer, D. J. (2004). "Trans fatty acids in hydrogenated fat inhibited the synthesis of the polyunsaturated fatty acids in the phospholipid of arterial cells". *Life sciences*, vol. 74, No. 22, pp. 2707-2723.

[5] Mozaffarian, D., Katan, M. B., Ascherio, A., Stampfer, M. J., and Willett, W. C. (2006). "Trans fatty acids and cardiovascular disease". *New England journal of medicine*, vol. 354, No. 15, pp.1601-1613.

[6] Tsuzuki, W., Matsuoka, A., Ushida, K. (2010). "Formation of trans fatty acids in edible oils during the frying and heating process". *Food Chemistry*, vol. 123, No. 4, pp. 976-982.

[7] Hendry, V. L., Almiron-Roig, E., Monsivais, P., Jebb, S. A., Benjamin Neelon, S. E., Griffin, S. J., and Ogilvie, D. B. (2015). "Impact of regulatory interventions to reduce intake of artificial trans-fatty acids: a systematic review". *American journal of public health*, vol. 105, No. 3, pp. 32-42.

[8] Craig-Schmidt., M. C. (2006). "World-wide consumption of trans fatty acids". *Atherosclerosis Supplements*, vol. 7, No. 2, pp. 1-4.

[9] Nishida, C., and Uauy, R. (2009). "WHO scientific update on health consequences of trans fatty acids: introduction". *European journal of clinical nutrition*, vol. 63, No. S2, pp. S1-S1.

considering that the amount of trans fatty acids in sunflower oil after frying 21 times is 0.644% and this amount in sesame oil is 3.429%, it can be said that sunflower oil shows greater resistance to the formation of trans fatty acids than sesame oil. In oxidation index tests, Corn oil is more resistant than other primary oils.

[10] Wan, Y., Li, H., Fu, G., Chen, X., Chen, F., and Xie, M. (2015). "The relationship of antioxidant components and antioxidant activity of sesame seed oil". *Journal of the Science of Food and Agriculture*, vol. 95, No.13, pp. 2571-2578.

[11] Huang, J., Sun, Q., Song, G., Qi, S., Chen, J., Zhang, P., Geng, T., Lin, Q., and Duan, Y. (2020). "Antioxidant and anti-isomerization effects of sesamol and resveratrol on high oleic acid peanut oil". *Food Science and Technology*, vol. 123, pp. 109077.

[12] Vegetable and animal oils and fats - Gas chromatography of fatty acid methyl esters - Part 2: Preparation of fatty acid methyl esters. National Organization of Standards of Iran, No. 13126-2.

[13] Vegetable and animal oils and fats - gas chromatography of fatty acid methyl esters - part 4: measurement by capillary gas chromatography. National Standards Organization of Iran, No. 13126-4.

[14] Vegetable and animal oils and fats - measurement of peroxide value - iodometric method with end point determination by visual method. National Organization of Standards of Iran, No. 4179.

[15] Liu, W. H., Inbaraj, B. S., and Chen, B. H. (2007). "Analysis and formation of trans fatty acids in hydrogenated soybean oil during heating". *Food Chemistry*, vol. 104, No. 4, pp. 1740-1749.

[16] Li, A., Yiming, H., Wang, F., Li, W., and Li, Q. (2012). "Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance fourier transform infrared spectroscopy and gas chromatography analysis". *Journal of Agricultural and Food Chemistry*, vol. 60, No. 42, pp. 10709-10713.

[17] Manzoor, S., Masoodi, F. A., and Rashid, R. (2023). Influence of food type, oil type and frying frequency on the formation of trans-fatty acids during repetitive deep-frying. *Food Control*, Vol. 147, pp. 109557

[18] Addo, P., Chen, J., Zheng, B., Li, X., Zhang, L., and Tano-Debrah, K. (2024). Potential factors that influence the occurrence of trans fatty acids in fried

foods: A case study on plantain chips sold within the Accra Metropolis, Ghana.

[19] Nagy, K., Iacob, B. C., Bodoki, E., and Oprean, R. (2024). Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. *Foods*, Vol. 13, No. 18, pp. 2961.

[20] Li, T., Guo, Q., Qu, Y., Liu, H., Liu, L., Zhang, Y., and Wang, Q. (2023). Inhibition mechanism of trans-resveratrol on thermally induced trans fatty acids in peanut oil. *Food Chemistry*, Vol. 406, pp 134863.

[21] Bhat, S., Maganja, D., Huang, L., Wu, J. H., and Marklund, M. (2022). "Influence of heating during cooking on trans fatty acid content of edible oils: a systematic review and meta-analysis". *Nutrients*, vol. 14, No. 7, pp. 1489.

فرمولاسیون جدید روغن سرخ کردنی بر پایه‌ی روغن کنجد

زهرا افشاری^{۱*}، محمد ربانی^۲، مژگان امیازجو^۳

- ۱- دانشجو کارشناسی ارشد رشته علوم و مهندسی صنایع غذایی، گرایش شیمی مواد غذایی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، استان تهران، شهر تهران، بزرگراه شهید بابایی (غرب به شرق)- خروجی حکیمیه- خیابان شهید صدوقی- بلوار شهید عباسپور- دانشگاه آزاد اسلامی واحد تهران.
- ۲- دکتری تخصصی، استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، استان تهران، شهر تهران، بزرگراه شهید بابایی (غرب به شرق)- خروجی حکیمیه- خیابان شهید صدوقی- بلوار شهید عباسپور- دانشگاه آزاد اسلامی واحد تهران شمال.
- ۳- دکتری تخصصی، استاد تمام، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، استان تهران، شهر تهران، بزرگراه شهید بابایی (غرب به شرق)- خروجی حکیمیه- خیابان شهید صدوقی- بلوار شهید عباسپور- دانشگاه آزاد اسلامی واحد تهران شمال.

چکیده

اطلاعات مقاله

تاریخ های مقاله :

تاریخ دریافت: ۱۴۰۳/۰۹/۲۱

تاریخ پذیرش: ۱۴۰۴/۰۲/۲۴

کلمات کلیدی:

اسیدچرب ترانس،
روغن آفتاب‌گردان،
روغن ذرت،
روغن کنجد،
عدد پراکسید.

DOI:10.48311/fsct.2026.83946.0

* مسئول مکاتبات:

zariafshari73@gmail.com

از آن جا که روغن کنجد پایداری اکسیداسیون بالاتری نسبت به سایر روغن‌های گیاهی دارد، در این تحقیق روغن کنجد به روغن‌های سرخ کردنی آفتاب‌گردان و ذرت افزوده شد تا تاثیر افزودن روغن کنجد را بر جلوگیری از تولید اسید چرب ترانس در طی تعداد دفعات بالای سرخ کردن، مورد بررسی قرار گرفته شود. شواهد همه‌گیری شناسی و مطالعات مورد شاهدی ارتباط بین میزان دریافت اسیدهای چرب ترانس و خطر بیماری‌های مختلف را نشان می‌دهد. در این تحقیق، علاوه بر بررسی تاثیر افزودن روغن کنجد بر جلوگیری از تولید اسید چرب ترانس، آزمون عدد پراکسید انجام شد. بدین منظور، تعداد ۳ تیمار روغن، از روغن‌های کنجد، ذرت و آفتاب‌گردان تهیه شد. تیمار اول حاوی ۳۳٪ آفتاب‌گردان، ۳۳٪ ذرت و ۳۳٪ کنجد، تیمار دوم حاوی ۰.۲۵٪ آفتاب‌گردان، ۰.۵۰٪ ذرت و ۰.۲۵٪ کنجد و تیمار سوم حاوی ۰.۵۰٪ آفتاب‌گردان، ۰.۲۵٪ ذرت و ۰.۲۵٪ آفتاب‌گردان، می‌یابد، میزان اسیدچرب ترانس پس از ۲۱ بار سرخ کردن در تیمار اول ۱.۲۴۳٪، در تیمار دوم ۱.۱۸۴٪ و در تیمار سوم ۱.۰۲۲٪ بود. در نتیجه تیمار سوم مقاوم ترین مخلوط روغن در برابر تشکیل اسید چرب ترانس بود. در آزمون پراکسید میزان عدد پراکسید با افزایش تعداد دفعات سرخ کردن، افزایش یافت (بیشتر از عدد ۵)، بهترین مخلوط روغن در برابر فساد اکسیداتیو تیمار اول و سپس تیمار دوم بود.