



## Dietary patterns and irritable bowel syndrome risk

Marzie Zilaei<sup>1,2</sup>, Seyed Ahmad Hosseini<sup>1,2</sup>, Rezvan Amiri<sup>3</sup>, Seyed Saeed Seyedian<sup>4</sup>, Sahar Sabahy<sup>1,2</sup>, and Ali Kajbafvala<sup>5</sup>

1-Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2-Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3-Master of Nutrition Science, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4-Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

5-Bachelor of Nutrition Science, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

### ARTICLE INFO

#### Article History:

Received: 2024/08/26

Accepted: 2024/10/30

#### Keywords:

Irritable bowel syndrome,

Western dietary pattern,

Mediterranean dietary pattern,

Unhealthy dietary pattern,

Traditional dietary pattern

### ABSTRACT

Irritable bowel syndrome is a functional and non-histological disorder of the lower gastrointestinal tract that causes abdominal discomfort. Stress, dietary patterns, excessive use of laxatives, antibiotics and caffeine, other gastrointestinal disorders, sleep disorders and fluid intake are factors affecting this disease. The aim of the present study was to investigate the relationship between dietary patterns and irritable bowel syndrome in adults in Ahvaz. In this case-control study, the protocol of which was approved by the Vice-Chancellor of Research of Ahvaz Jundishapur University of Medical Sciences (Registration number RDC-9809) and the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (Registration number IR.AJUMS.REC.1398.908), a 147-item food frequency questionnaire (FFQ) was used to assess food intake. Extraction of the dominant dietary patterns was performed using principal component analysis (PCA) and finally the different tertiles of adherence to each dietary pattern with the risk of irritable bowel syndrome were examined using logistic regression and adjustment for confounders. Four dominant dietary patterns were extracted, which included traditional, unhealthy Western, and Mediterranean dietary patterns. After adjusting for confounders, the results showed that adherence to an unhealthy dietary pattern was associated with an increased risk of irritable bowel syndrome. Following a Mediterranean dietary pattern was associated with a reduced risk of IBS in the unadjusted model ( $OR=0.49$ ,  $P=0.03$ ). Although this association was not statistically significant in the adjusted models, there was a trend toward a reduced risk ( $P\text{-trend}=0.04$ ). There was no significant association between adherence to traditional and Western dietary patterns with the risk of irritable bowel syndrome. There is an association between adherence to dominant dietary patterns and the risk of developing irritable bowel syndrome. The results of this study showed that adherence to an unhealthy dietary pattern was associated with an increased risk and adherence to a Mediterranean dietary pattern was associated with a reduced risk of developing the condition. Future studies could investigate the specific mechanisms through which diet influences IBS, taking into account the role of lifestyle and psychosocial factors.

DOI: [10.48311/fsct.2025.83845.0](https://doi.org/10.48311/fsct.2025.83845.0).

\*Corresponding Author E-

Zilaei-m@ajums.ac.ir

## 1. Introduction

Irritable Bowel Syndrome (IBS) is functional disorder of lower gastrointestinal tract that characterized by altered bowel habits lead to recurrent or chronic abdominal pain (1). The prevalence of IBS in western countries is about 10-15%. This is reported that the prevalence of IBS in Asian countries is not so different from Westerners (2, 3). Approximately 0.25-1.1% of Iranian population have IBS (4). Numerous factors may exacerbate IBS; for example stress, dietary patterns, overuse of laxatives, antibiotics and caffeine, previous gastrointestinal disorders, sleep disorders and fluid intake (5, 6). Observational studies reported that patients with IBS have low quality of life (7). This is reported that high-carbohydrate diets may play a role in the symptoms of IBS, because of the incomplete absorption (8).

The results of a cross-sectional study of patients with IBS showed that lifestyle changes may reduce the symptoms.(9). Dietary pattern is one of the lifestyle factors that could affect the progression of IBS. Dietary patterns of individuals is affected by culture and race and many environmental factors (availability of food, ability of people to shop and advertise) (10). Although many studies have examined the association between foods or nutrients with IBS, there are few studies on the relationship between dietary patterns with IBS; for example Buscail., et al reported that the western dietary pattern was associated with IBS patients and more adherence to traditional dietary pattern was related to IBS in women (11). Determining the association between dietary pattern and risk of some disease in different countries is important because different cultures, religious beliefs and geography affect the dietary pattern (12). Given the synergistic effects of foods on each other and the wide variety of foods that can affect the risk of IBS or exacerbate its symptoms, evaluating dietary patterns seems to be an effective way to investigate the role of diet in IBS (13); so we designed and implemented the

present study with the aim of survey the association between dietary patterns and IBS risk.

## 2. Materials and Methods

The present study had a case-control design. Our study protocol was approved by the research assistant of Ahvaz Jundishapur University of Medical Sciences (Registration No. RDC-9809)

### 2.1 Definition and Selection the Cases and Controls

About 83 adult patients with IBS referred to the office of a gastroenterologist of Ahvaz city were randomly selected. Cases were identified based on the ROME-III criteria. ROME-III criteria include recurrent abdominal discomfort (feeling uncomfortable without pain) or pain at least 3 days per month in last 3 months in addition to two or more of the following symptoms:

1. Improvement with defecation
2. Onset related to a change in frequency of stool
3. Onset related to a change in appearance of stool

\*Criteria were set for the last 3 months and onset of symptoms at least 6 months prior to diagnosis (14).

Controls (N=182) were included in our study from the healthy (without IBS) patient's companions as well as those who refer to other wards of the clinic.

### Inclusion Criteria

- 1: Willingness to do the interview and collaborate in our study
- 2: Age between 18 to 65 years
- 3: Body mass index in the normal range (18-25)

### **Exclusion Criteria**

- 1: Any intestinal disease (diagnosis based on colonoscopy in the last 5 years) and intestinal infection (diagnosis based on fecal culture in suspected specimen)
- 2: Medical history of chronic gastrointestinal and colorectal disease
- 3: Any major bowel surgery
- 4: Regular use of laxatives or antidiarrheal drugs
- 5: Chronic use of antibiotics and corticosteroids and immunosuppressants
- 6: Use of drugs that alter gastrointestinal motility such as metoclopramide, cisapride, diphenoxylate, etc.
- 7: Taking drugs that increase bleeding from intestinal mucus such as aspirin, warfarin, heparin, etc.
- 8: Pregnancy or breastfeeding, being an athlete or hospitalized
- 9: Severe mental and behavioral disorders
- 10: Consumption of nicotine and its derivatives in the last 6 months
- 11: Taking non-steroidal anti-inflammatory drugs last week

### **2.2 Ethics**

The whole protocol of our study was approved by the Ahvaz Jundishapur

University of Medical Sciences Ethics Committee (Registration No. IR.AJUMS.REC.1398.908) and all the participants provided written informed consent.

### **2.3 Dietary Pattern**

Dietary information of patients with IBS and control group were collected using a 147-item Food Frequency Questionnaire (FFQ) which was validated for Iranian adults (15). This questionnaire was completed by interview by a nutritionist. This questionnaire evaluates food intake in 6 groups of bread and cereals, meat, dairy, vegetables, fruits and miscellaneous. During the interview, the average size of each food item in the FFQ explained to all individuals, and then the subjects asked to rate the consumption of each food item according to the standard serving size based on the option of load per day, week, month or year. 147 food items were aggregated into 25 food groups based on nutrient profiles and previous studies (Table1).

**Table 1. Food groups using in the dietary pattern analysis**

|    | <b>Food groups</b>     | <b>Food Items</b>                                                   |
|----|------------------------|---------------------------------------------------------------------|
| 1  | Vegetable oils         | Any types of vegetable oils                                         |
| 2  | Red and processed meat | Beef and veal, mutton, minced meat, sausages, hamburgers            |
| 3  | Spices                 | Pepper, turmeric and other spices                                   |
| 4  | French fries           | French fries                                                        |
| 5  | Tea and coffee         | Tea, coffee and nescafe                                             |
| 6  | Poultry                | Chicken                                                             |
| 7  | Salt                   | salt                                                                |
| 8  | Eggs                   | Eggs                                                                |
| 9  | Solid fats             | Solid vegetable oil, animal oil, animal butter, margarine           |
| 10 | Whole grains           | Barbari bread, stone bread, Tufton bread, whole grain bread, others |
| 11 | Organ meat             | Heart, liver, kidneys, tongue, brain, head and legs, sirabi         |

|    |                         |                                                                                                                                                                                                                                                                        |
|----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | High fat dairy products | Full-fat milk, full-fat yogurt, cream cheese, cream, ice cream, others                                                                                                                                                                                                 |
| 13 | Boiled potato           | Boiled potato                                                                                                                                                                                                                                                          |
| 14 | Beans                   | Lentils, peas, beans, soybeans, others                                                                                                                                                                                                                                 |
| 15 | Fish                    | Any type of fish, canned fish                                                                                                                                                                                                                                          |
| 16 | Snacks                  | Biscuits, puffs, chips, others                                                                                                                                                                                                                                         |
| 17 | Refined grains          | Lavash bread, baguette bread, rice, macaroni, others                                                                                                                                                                                                                   |
| 18 | Nuts                    | Almonds, peanuts, walnuts, pistachios, hazelnuts, seeds, others                                                                                                                                                                                                        |
| 19 | Mayonnaise sauce        | Mayonnaise sauce                                                                                                                                                                                                                                                       |
| 20 | Sweets and desserts     | Dry sweets, sweeter sweets, chocolates, all kinds of cakes and cookies, honey, jam, sugar, sugar, candies others                                                                                                                                                       |
| 21 | Pickles                 | Pickles, salted vegetables, pickled cucumber                                                                                                                                                                                                                           |
| 22 | Vegetables              | Cabbage, carrot, tomato and its products, spinach, lettuce, cucumber, eggplant, onion, green bean, pea, pumpkin, mushroom, bell pepper, turnip, corn, garlic and other vegetables.                                                                                     |
| 23 | fruits and fruit juices | Cantaloupe, watermelon, melon, green tomato, apple, apricot, yellow and red plum, Cherry, nectarine, peach, pear, fig, date, grape, kiwi, pomegranate, banana, persimmon, berries, pineapple, cirtus, dry fruit, various types of natural and industrial juices, other |
| 24 | Low fat dairy products  | Low-fat milk, fat-free milk, low-fat yogurt, normal yogurt, white cheese, kashk, dogh, others                                                                                                                                                                          |
| 25 | Olives and olive oil    | Olives, olive oil                                                                                                                                                                                                                                                      |

#### 2.4 Physical Activity Assessment

The Metabolic Equivalent (MET) Physical Activity Questionnaire was used to assess physical activity status of participants. Finally, individuals classified into three groups with low, medium and high activity levels. The validity and reliability of this questionnaire have been examined in Iran (16).

#### 2.5 Anthropometric Measurements

Participants' body weight was measured with minimally clothed and without shoes. Height was measured without shoes, in a standing position, while shoulders were in a normal position. Body Mass Index (BMI) was obtained by dividing weight (Kg) by height (m) squared. Waist circumference (WC) was measured using a tape measure in the standing position in the area between

the lowest gear and the iliac crest. Hip circumference (HC) measured in the largest area of the hip and the waist to hip circumference (WHR) ratio was calculated.

#### 2.6 Assessment of sleep status

The sleep status of participants was evaluated and scored based on the Petersburg Sleep Quality Questionnaire (PSQI).

#### 2.7 Statistical Analysis

The data are entered in SPSS software version 16 and then according to the obtained data, we use the appropriate statistical method. Factor analysis method was used to identify the major dietary patterns in this study. In this method, food

items are first categorized into predefined groups (based on the knowledge of the researcher and previous studies) and based on the correlation between these food groups using SPSS software, food patterns are determined. PCA (Principal Component Analysis) used to identify major dietary patterns (17).

To examine if the distribution of the different foods allows the use of principal component analysis, the Kaiser–Meyer–Olkin (KMO) test was used. Values greater than 0.5 are acceptable for this test. Obtained factors were retained for further analysis based on Eigen values  $> 2.5$ , Scree plot and natural interpretation. Only the food groups with the communalities  $> 0.4$  were considered in each extracted factor. The extracted patterns were named based on the loaded groups and considering the former literatures. The positive factor load in each pattern indicates a direct relationship with that pattern and the negative factor load indicates an inverse relationship with that pattern. Each person surveyed received a score based on adherence to extracted dietary patterns. All the cases and controls were categorized by tertiles of dietary pattern scores and used in the final analysis. Logistic regression test (OR: Odds Ratio) used to assess the relationship between dietary patterns and the

risk of IBS with and without control of confounders. Crude relationship between patterns and IBS risk was reported in model 1. The relationship with adjustment for age and sex confounders were named model 2. Moreover, further adjustment for body mass index and energy intake category was done in model 3. The significance level considered 0.05. The control method of confounding variables did by ANCOVA method.

### 3. Results

#### 3.1 Study population

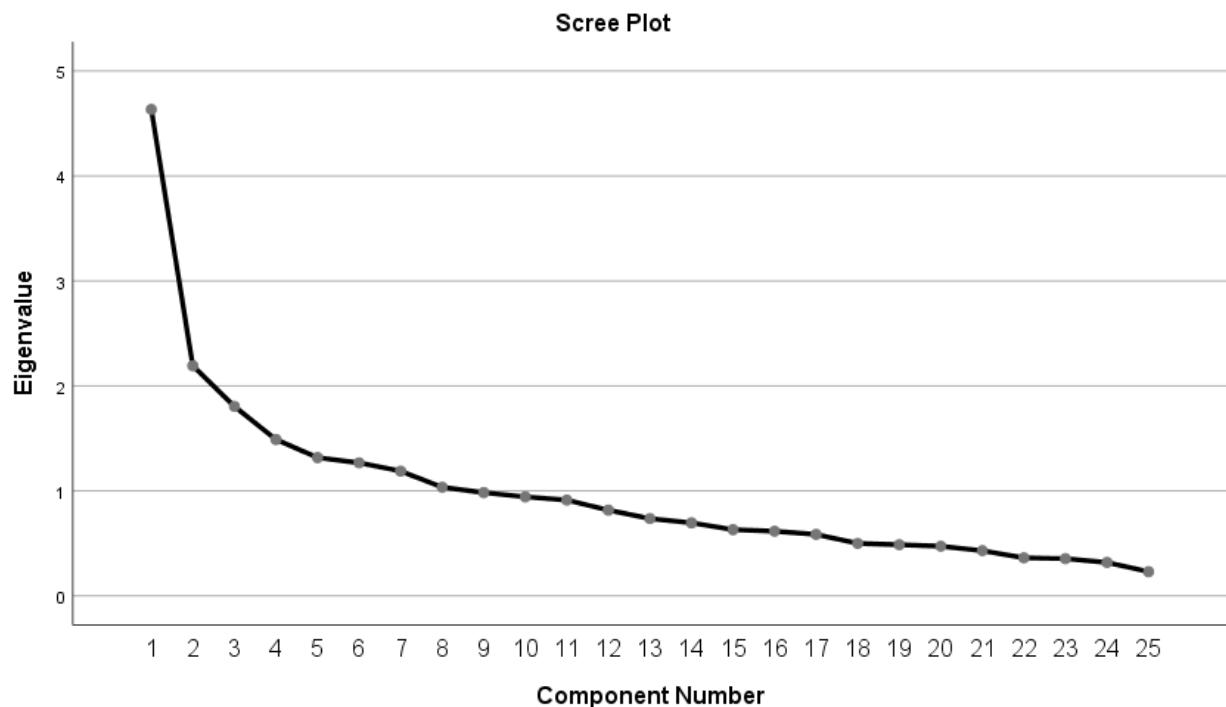
A total of 270 (187 healthy and 83 IBS) participants were included in the present case-control study, which was done in Ahvaz city, Khuzestan province, in the south west of Iran. The anthropometric and demographic characteristics of case and control participants are presented in Table 2. The mean age of control group was significantly lower than case group ( $P < 0.001$ ). As shown, there was also a significant difference between IBS and healthy participants about smoking status and the cases were more smoker than controls ( $P = 0.02$ ). Other demographic characteristics had no significant differences between patients and control groups.

**Table 2. Anthropometric and demographic characteristics of participants based on the IBS status (n =271)**

| Characteristics               | Controls<br>N= 187 (69.26%) | Cases<br>N= 83 (30.74%) | p-value <sup>a</sup> |
|-------------------------------|-----------------------------|-------------------------|----------------------|
| <b>Contentious variables</b>  | Mean $\pm$ SD               |                         |                      |
| <b>Age (Year)</b>             | 29.42 $\pm$ 7.08            | 34.53 $\pm$ 10.47       | < 0.001              |
| <b>BMI (Kg/m<sup>2</sup>)</b> | 23.59 $\pm$ 3.56            | 24.41 $\pm$ 3.72        | 0.77                 |
| <b>WHR</b>                    | 0.49 $\pm$ 0.05             | 0.51 $\pm$ 0.05         | 0.81                 |
| <b>BP (mmHg)</b>              | 115.07 $\pm$ 8.59           | 121.14 $\pm$ 9.89       | 0.63                 |

|                                         |                     |                 |                      |
|-----------------------------------------|---------------------|-----------------|----------------------|
| <b>Physical activity (MET/min/week)</b> | 2920.81±794.81      | 1729.91±800.36  | 0.55                 |
| <b>Energy intake (Kcal/day)</b>         | 2730.97±1399.49     | 2868.27±1304.31 | 0.35                 |
| <b>Categorical variables</b>            | Frequency (percent) |                 | p-value <sup>β</sup> |
| <b>Gender</b>                           |                     |                 |                      |
| Female                                  | 92 (49.2)           | 41 (49.4)       | 0.97                 |
| Male                                    | 95 (50.8)           | 42 (50.6)       |                      |
| <b>Sleep quality (PSQI)</b>             |                     |                 |                      |
| No sleep disorders                      | 73 (38.8)           | 32 (38.6)       | 0.88                 |
| Moderate sleep disorders                | 70 (37.2)           | 33 (39.8)       |                      |
| Serious sleep disorders                 | 17 (9)              | 8 (9.6)         |                      |
| Very serious sleep disorders            | 2 (1.1)             | 0 (0)           |                      |
| <b>Alcohol consumption</b>              |                     |                 |                      |
| Yes                                     | 6 (3.2)             | 6 (7.2)         | 0.12                 |
| No                                      | 182 (96.8)          | 77 (92.8)       |                      |
| <b>Psychiatric Disease</b>              |                     |                 |                      |
| Yes                                     | 22 (12)             | 16 (21.3)       | 0.05                 |
| No                                      | 162 (88)            | 59 (78.7)       |                      |
| <b>Smoking status</b>                   |                     |                 |                      |
| Yes                                     | 5.34                | 13.50           | 0.02                 |
| No                                      | 94.65               | 86.40           |                      |

IBS, Irritable bowel syndrome; SD, Standard Deviation; BMI, Body Mass Index; WHR, Waist to Hip Ratio; BP, Blood Pressure; PSQI, Pittsburgh Sleep Quality Index.


<sup>a</sup>p-values based on Student tests.

<sup>β</sup>p-values based on Chi square tests.

### 3.2. Dietary Patterns

The Kaiser–Meyer–Olkin (KMO) test was done for assessing the sufficiency of sample size for principal component analysis. The KMO test result was 0.70. Principal component analysis extracted four major dietary patterns using Eigen value  $>2.5$  and scree plot (figure1). These four patterns explained 40.47% of the total variance. All the patterns and foods groups loaded on them are shown in table3 including **western dietary pattern** characterized by “high consumption of Vegetable oils, Red and processed meat, Spices, French fries, Tea

and coffee, Poultry, Sweets and desserts and Boiled potato”, **traditional dietary pattern** characterized by “high consumption of Solid fats, Whole grains, Organ meat, High fat dairy products, Boiled potato, Beans and Fish”, **unhealthy dietary pattern** characterized by “high consumption of Chips and puffs, Refined grains, Nuts, Mayonnaise sauce, Sweets and desserts and Pickles” and **Mediterranean dietary pattern** characterized by “high consumption of Vegetables, fruits and fruit juices, Low fat dairy products, olive and olive oil” (Table 3).



**Figure1:** The major extracted factors based on fracture on the scree plot.

**Table3:** Factor loading matrix for major dietary patterns

| Food groups             | Western pattern | Traditional pattern | Unhealthy pattern | Mediterranean pattern |
|-------------------------|-----------------|---------------------|-------------------|-----------------------|
| Vegetable oils          | 0.77            | -                   | -                 | -                     |
| Red and processed meat  | 0.61            | -                   | -                 | -                     |
| Spices                  | 0.55            | -                   | -                 | -                     |
| French fries            | 0.54            | -                   | -                 | -                     |
| Tea and coffee          | 0.52            | -                   | -                 | -                     |
| Poultry                 | 0.49            | -                   | -                 | -                     |
| Salt                    | -               | -                   | -                 | -                     |
| Eggs                    | -               | -                   | -                 | -                     |
| Solid fats              | -               | 0.63                | -                 | -                     |
| Whole grains            | -               | 0.62                | -                 | -                     |
| Organ meat              | -               | 0.62                | -                 | -                     |
| High fat dairy products | -               | 0.55                | -                 | -                     |
| Boiled potato           | 0.42            | 0.52                | -                 | -                     |
| Beans                   | -               | 0.47                | -                 | -                     |
| Fish                    | -               | 0.42                | -                 | -                     |
| Chips and puffs         | -               | -                   | 0.60              | -                     |
| Refined grains          | -               | -                   | 0.55              | -                     |
| Nuts                    | -               | -                   | 0.53              | -                     |
| Mayonnaise sauce        | -               | -                   | 0.51              | -                     |
| Sweets and desserts     | 0.47            | -                   | 0.50              | -                     |
| Pickles                 | -               | -                   | 0.49              | -                     |
| Vegetables              | -               | -                   | -                 | 0.77                  |
| fruits and fruit juices | -               | -                   | -                 | 0.73                  |
| Low fat dairy products  | -               | -                   | -                 | 0.59                  |

|                                  |       |      |      |      |
|----------------------------------|-------|------|------|------|
| Olives and olive oil             | -     | -    | -    | 0.72 |
| Percentage of variance explained | 13.23 | 9.76 | 7.13 | 6.35 |

**Extraction Method: Principal Component Analysis.**

**Rotation Method: Varimax with Kaiser Normalization.**

**Values > 0.4 were retained for simplicity.**

### 3.3. The association of dietary patterns adherence with IBS risk

The association of IBS risk with tertiles of dietary patterns adherence scores was assessed using logistic regression in three models and the results were reported in table 4. There was no significant association between western pattern and IBS risk (P-value and P-trend > 0.05). The participants in tertile 2 of traditional pattern score had significantly higher odds for IBS risk in model1 (P= 0.04); but this relationship was faded after adjustment for age, sex, body mass index and energy intake category (P > 0.05). Also, there was no ordered relationship across the tertiles of traditional pattern (P-trend > 0.05). The participants

with higher scores for unhealthy patterns had higher odds for IBS risk than reference tertile (P < 0.001). Also, there was an ordered relationship across the tertiles of unhealthy pattern in all the three models (P < 0.001). The participants in tertile 3 of Mediterranean pattern score had significantly higher odds for IBS risk in model1 (P= 0.03); but this relationship was faded after adjustment for age, sex, body mass index and energy intake category (P > 0.05). Moreover, there was an ordered relationship between tertiles of Mediterranean score in all three models (P < 0.05).

**Table4: Multivariate adjusted odds ratio (95%CIs) for IBS across tertile of dietary patterns of participants**

| Models                       | Tretile1<br>OR (95%CIs)<br>p-value | Tretile2<br>OR (95%CIs)<br>p-value | Tretile3<br>OR (95%CIs)<br>p-value | P-trend |
|------------------------------|------------------------------------|------------------------------------|------------------------------------|---------|
| <b>Western pattern</b>       |                                    |                                    |                                    |         |
| <b>Model 1</b>               | reference                          | 1.07 (0.57 - 2)<br>p = 0.83        | 1.17 (0.62 - 2.21)<br>P = 0.63     | 0.63    |
| <b>Model 2</b>               | reference                          | 1.12 (0.51 - 2.47)<br>P = 0.77     | 0.8 (0.37 - 1.76)<br>P = 0.59      | 0.63    |
| <b>Model 3</b>               | reference                          | 1.21 (0.53 - 2.76)<br>P = 0.65     | 0.92 (0.38 - 2.22)<br>P = 0.85     | 0.66    |
| <b>Traditional pattern</b>   |                                    |                                    |                                    |         |
| <b>Model 1</b>               | reference                          | 0.51 (0.27 - 0.98)<br>P = 0.04     | 0.67 (0.35 - 1.31)<br>P = 0.24     | 0.26    |
| <b>Model 2</b>               | reference                          | 0.53 (0.25 - 1.15)<br>P = 0.12     | 1.19 (0.52 - 2.71)<br>P = 0.68     | 0.30    |
| <b>Model 3</b>               | reference                          | 0.59 (0.27 - 1.31)<br>P = 0.19     | 1.39 (0.56 - 3.43)<br>P = 0.48     | 0.28    |
| <b>Unhealthy pattern</b>     |                                    |                                    |                                    |         |
| <b>Model 1</b>               | reference                          | 6.33 (3.17 - 12.66)<br>P < 0.001   | 5 (2.58 - 9.70)<br>P < 0.001       | < 0.001 |
| <b>Model 2</b>               | reference                          | 4.74 (2.1 - 10.69)<br>P < 0.001    | 4.94 (2.37 - 10.66)<br>P < 0.001   | < 0.001 |
| <b>Model 3</b>               | reference                          | 4.62 (1.98 - 10.74)<br>P < 0.001   | 5.11 (2.44 - 11.65)<br>P < 0.001   | < 0.001 |
| <b>Mediterranean pattern</b> |                                    |                                    |                                    |         |

|                |           |                               |                               |      |
|----------------|-----------|-------------------------------|-------------------------------|------|
| <b>Model 1</b> | reference | 1.02 (0.52 – 1.98)<br>P= 0.97 | 0.49 (0.26 – 0.93)<br>P= 0.03 | 0.03 |
| <b>Model 2</b> | reference | 1.54 (0.71 – 3.36)<br>P= 0.28 | 0.71 (0.32 – 1.56)<br>P= 0.39 | 0.04 |
| <b>Model 3</b> | reference | 1.68 (0.73 – 3.83)<br>P= 0.22 | 0.74 (0.26 – 2.1)<br>P= 0.57  | 0.04 |

**OR (95%CI) and P-values were determined based on logistic regression.**

**Model1: unadjusted.**

**Model2: adjusted for age and sex.**

**Model3: adjusted for age, sex, body mass index and energy intake category.**

#### 4-References

[1] Khan S, Chang L. Diagnosis and management of IBS. *Nature reviews Gastroenterology & hepatology*. 2010;7(10):565.

[2] Chang F-Y, Lu C-L, Chen T-S. The current prevalence of irritable bowel syndrome in Asia. *Journal of neurogastroenterology and motility*. 2011;17(1):1-11.

[3] Cremonini F, Talley NJ. Irritable bowel syndrome: epidemiology, natural history, health care seeking and emerging risk factors. *Gastroenterology Clinics*. 2005;34(2):189-204.

[4] Jahangiri P, Jazi MSH, Keshteli AH, Sadeghpour S, Amini E, Adibi P. Irritable bowel syndrome in Iran: SEPAHAN systematic review No. 1. *International journal of preventive medicine*. 2012;3(Suppl1):S1.

[5] Halpert A, Dalton CB, Palsson O, Morris C, Hu Y, Bangdiwala S, et al. What patients know about irritable bowel syndrome (IBS) and what they would like to know. National Survey on Patient Educational Needs in IBS and development and validation of the Patient Educational Needs Questionnaire (PEQ). *American Journal of Gastroenterology*. 2007;102(9):1972-82.

[6] Kabra N, Nadkarni A. Prevalence of depression and anxiety in irritable bowel syndrome: A clinic based study from India. *Indian journal of Psychiatry*. 2013;55(1):77.

[7] Wang YT, Lim HY, Tai D, Krishnamoorthy TL, Tan T, Barbier S, et al. The impact of irritable bowel syndrome on health-related quality of life: a Singapore perspective. *BMC gastroenterology*. 2012;12(1):1-5.

[8] Goldstein R, Braverman D, Stankiewicz H. Carbohydrate malabsorption and the effect of dietary restriction on symptoms of irritable bowel syndrome and functional bowel complaints. *The Israel Medical Association journal: IMAJ*. 2000;2(8):583-7.

[9] Kang SH, Choi S-W, Lee SJ, Chung WS, Lee HR, Chung K-Y, et al. The effects of lifestyle modification on symptoms and quality of life in patients with irritable bowel syndrome: a prospective observational study. *Gut and liver*. 2011;5(4):472.

[10] Jinlin F, Binyou W, Terry C. A new approach to the study of diet and risk of type 2 diabetes. *Journal of postgraduate medicine*. 2007;53(2):139.

[11] Buscail C, Sabate J-M, Bouchoucha M, Kesse-Guyot E, Hercberg S, Benamouzig R, et al. Western dietary pattern is associated with irritable bowel syndrome in the French NutriNet cohort. *Nutrients*. 2017;9(9):986.

[12] Kant AK. Dietary patterns and health outcomes. *Journal of the American Dietetic Association*. 2004;104(4):615-35.

[13] Seyedhamzeh S, Damari B. The conceptual model of food and nutrition security in Iran. 2017.

[14] Bai T, Xia J, Jiang Y, Cao H, Zhao Y, Zhang L, et al. Comparison of the Rome IV and Rome III criteria for IBS diagnosis: A cross-sectional survey. *Journal of gastroenterology and hepatology*. 2017;32(5):1018-25.

[15] Esfahani FH, Asghari G, Mirmiran P, Azizi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. *Journal of epidemiology*. 2010;20(2):150-8.

[16] Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S. The Iranian

Version of International Physical Activity Questionnaire) IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. *World applied sciences journal.* 2012;18(8):1073-80.

[17] Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. *Current opinion in lipidology.* 2002;13(1):3-9.

[18] Mahmood K, Riaz R, Haq MSU, Hamid K, Jawed H. Association of cigarette smoking with irritable bowel syndrome: A cross-sectional study. *Medical journal of the Islamic Republic of Iran.* 2020;34:72.

[19] Rozich JJ, Holmer A, Singh S. Effect of lifestyle factors on outcomes in patients with inflammatory bowel diseases. *Official journal of the American College of Gastroenterology| ACG.* 2020;115(6):832-40.

[20] Chey WD, Hashash JG, Manning L, Chang L. AGA clinical practice update on the role of diet in irritable bowel syndrome: expert review. *Gastroenterology.* 2022;162(6):1737-45. e5.

[21] Tseng P-H, Chiu H-M, Tu C-H, Wu M-S, Ho H-N, Chen M-J. Obesity exacerbates irritable bowel syndrome-related sleep and psychiatric disorders in women with polycystic ovary syndrome. *Frontiers in Endocrinology.* 2021;12:779456.

[22] Wilmes L, Collins JM, O'Riordan KJ, O'Mahony SM, Cryan JF, Clarke G. Of bowels, brain and behavior: a role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. *Neurogastroenterology & Motility.* 2021;33(3):e14095.

[23] Altomare A, Di Rosa C, Imperia E, Emerenziani S, Cicala M, Guarino MPL. Diarrhea predominant-irritable bowel syndrome (IBS-D): effects of different nutritional patterns on intestinal dysbiosis and symptoms. *Nutrients.* 2021;13(5):1506.

[24] Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. *Nature reviews Gastroenterology & hepatology.* 2020;17(8):473-86.

[25] Rej A, Sanders DS, Shaw CC ,Buckle R, Trott N, Agrawal A, et al. Efficacy and acceptability of dietary therapies in non-constipated irritable bowel syndrome: a

randomized trial of traditional dietary advice, the low FODMAP diet, and the gluten-free diet. *Clinical gastroenterology and hepatology.* 2022;20(12):2876-87. e15.

[26] Rinninella E, Cintoni M, Raoul P, Gasbarrini A, Mele MC. Food additives, gut microbiota, and irritable bowel syndrome: A hidden track. *International journal of environmental research and public health.* 2020;17(2):8816.

[27] Chen EY, Mahurkar-Joshi S, Liu C, Jaffe N, Labus JS, Dong TS, et al. The association between a Mediterranean diet and symptoms of irritable bowel syndrome. *Clinical Gastroenterology and Hepatology.* 2024;22(1):164-72. e6.

[28] Al-Biltagi M, El Amrousy D, El Ashry H, Maher S, Mohammed MA, Hasan S. Effects of adherence to the Mediterranean diet in children and adolescents with irritable bowel syndrome. *World Journal of Clinical Pediatrics.* 2022;11(4):330.



## مقاله علمی-پژوهشی

## الگوهای غذایی دریافتی و خطر سندرم روده تحریک پذیر

مرضیه زیلایی<sup>۱،۲\*</sup>، سید احمد حسینی<sup>۲</sup>، رضوان امیری<sup>۳</sup>، سید سعید سیدیان<sup>۴</sup>، سحر صباحی<sup>۱</sup>، علی کجاف والا<sup>۵</sup>

۱- مرکز تحقیقات تغذیه و بیماری‌های متابولیک، پژوهشکده بالینی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

۲- گروه تغذیه، دانشکده پرایپشنکی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

۳- کارشناس ارشد تغذیه، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

۴- مرکز تحقیقات گوارش، پژوهشکده بالینی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

۵- کارشناس تغذیه، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

## چکیده

## اطلاعات مقاله

تاریخ های مقاله :

تاریخ دریافت: ۱۴۰۳/۰۶/۰۵

تاریخ پذیرش: ۱۴۰۳/۰۸/۰۹

## کلمات کلیدی:

سندرم روده تحریک پذیر یک اختلال عملکردی و غیر هیستولوژیک در دستگاه گوارش تحتانی است که منجر به ناراحتی شکمی می شود. استرس، الگوهای غذایی دریافتی، استفاده بیش از حد از ملین ها، آنتی بیوتیک ها و کافئین، سایر اختلالات دستگاه گوارش، اختلالات خواب و مصرف مایعات عوامل تاثیرگذار بر این بیماری هستند. هدف مطالعه حاضر، بررسی ارتباط بین الگوهای غذایی دریافتی با طر سندرم روده تحریک پذیر در بزرگسالان شهر اهواز می باشد. در این مطالعه مورد شاهدی که پرتوکل آن مورد تایید معاونت پژوهشی دانشگاه علوم پزشکی جندی شاپور اهواز (شماره ثبت شماره ثبت RDC-9809) و کمیته اخلاق دانشگاه علوم پزشکی جندی شاپور اهواز (شماره ثبت ۱۴۷ FFQ) قرار گرفت، از پرسنل شامه خوارک (IR.AJUMS.REC.1398.908) قرار گرفت، از پرسنل شامه خوارک (IR.AJUMS.REC.1398.908) آیتمی جهت بررسی دریافت های غذایی استفاده شد. استخراج الگوهای غذایی غالب دریافتی با استفاده از روش تحلیل مولفه های اصلی (PCA) انجام شد و در نهایت سهک های مختلف پیروی از هر الگوی غذایی با خطر سندرم روده تحریک پذیر با استفاده از رگرسیون لجستیک و تعديل عوامل مخدوشگر، مورد بررسی قرار گرفت. الگوی غذایی غالب استخراج شد که شامل الگوهای غذایی سنتی، غریب ناسالم و مدیرانه ای بودند. پس از تعديل عوامل مخدوشگر نتایج نشان داد که پیروی از الگوی غذایی ناسالم با افزایش خطر سندرم روده تحریک پذیر مرتبط بود. پیروی از الگوی رژیم غذایی مدیرانه ای، با کاهش خطر ابتلا به IBS در مدل تعديل نشده همراه بود ( $P=0.03$ ,  $OR=0.49$ ). اگرچه این ارتباط در مدل های تعديل شده از نظر آماری معنی دار نبود، اما روندی به سمت کاهش ریسک وجود داشت ( $P-trend=0.04$ ). بین پیروی از الگوی غذایی سنتی و غریب با خطر سندرم روده تحریک پذیر، ارتباط معنی داری وجود نداشت. بین پیروی از الگوهای غذایی دریافتی غالب با خطر ابتلا به سندرم روده تحریک پذیر ارتباط وجود دارد. نتایج این مطالعه نشان داد که پیروی از الگوی غذایی ناسالم با افزایش خطر و پیروی از الگوی غذایی مدیرانه ای با کاهش خطر ابتلا به این بیماری مرتبط بودند. مطالعات آینده می توانند مکانیسم های خاصی را که از طریق آنها رژیم غذایی بر IBS تأثیر می گذارد، با در نظر گرفتن نقش سبک زندگی و عوامل روانی-اجتماعی بررسی کنند.

DOI: 10.48311/fsct.2025.83845.0

\* مسئول مکاتبات:

Zilaee-m@ajums.ac.ir