

Journal of Food Science and Technology (Iran)

Homepage: www.fsct.modares.ir

Scientific Research

Evaluation of the Effect of Aqueous-Enzymatic Extraction Using Cellulase and Pepsin Enzymes on Phytochemical Compounds and Physicochemical Properties of Sesame Oil

Zeinab Zaheri Abdovand¹, Mohammad Javaheriyan², Maryam Kolahi^{*3}, Mohammad Sabaeian⁴

- 1- Master's student in the Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- 2- Associate Professor of Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- 3- 3.Associate Professor of Biology Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- 4- Professor of Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
 5- Centre for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Iran.

ARTICLE INFO

ABSTRACT

Article History:

Received:2025/1/19

Accepted:2025/5/6

Keywords:

Aqueous-enzymatic extraction,

Cellulase,

Oil,

Pepsin,

Sesame.

DOI: 10.22034/FSCT.22.166.143.

*Corresponding Author E-

salvia20us@yahoo.com

Sesame (Sesamum indicum L.) is highly valued both nutritionally and industrially due to its rich phytochemical composition, including lignans and unsaturated fatty acids. This study investigated the impact of aqueous-enzymatic extraction using cellulase and pepsin enzymes on sesame oil extraction yield and quality parameters. Results indicated that the application of cellulase and pepsin enzymes not only enhanced the extraction yield but also improved bioactive compounds such as total phenols, vitamin E, and antioxidant capacity. Quality including acid value, saponification value, unsaponifiable matter, showed no significant changes and remained within standard ranges. The iodine value also remained unchanged, reflecting the preservation of key fatty acids like oleic acid, linoleic acid, and palmitic acid. This stability was attributed to the gentle aqueous-enzymatic method, which prevents compound degradation. Furthermore, the peroxide value decreased to 8 milliequivalents per kilogram, indicating improved oxidative stability of the oil. Unsaponifiable compounds showed a significant increase, contributing to the overall enhancement of oil quality. Additionally, the anisidine value, a marker of secondary oil oxidation, was reduced, signaling diminished primary oxidation and improved oil stability. These findings confirm that the aqueous-enzymatic method can be a green, efficient, and environmentally friendly approach for sesame oil extraction.

1.Introduction

Sesame (Sesamum indicum L.) is an annual herbaceous plant belonging to the family Pedaliaceae, known as the "Queen of Oilseeds" due to its strong antioxidant properties [1]. The plant originated in India and later spread to Africa, Asia, and the southern regions of the Mediterranean basin. India, Sudan, China, and Burma are among the major producers of sesame, where the trade of this crop holds significant importance [2]. Sesame seeds contain various phytochemical compounds, including phenolic acids, flavonoids, phytosterols, tocopherols, phospholipids, and lignans such as sesamol, sesamin, and sesamolin [3]. Sesame oil is one of the main products derived from this plant and is traditionally used in cooking and as a flavor enhancer in both Asian and Western cuisines. Additionally, sesame oil is utilized in diets and for the treatment of certain health conditions. It is recognized as one of the finest vegetable oils and is an important source of energy [4]. In terms of nutritional value, sesame oil ranks second after olive oil [5]. It is primarily composed of oleic-linoleic fatty acids, with over 80% of its fatty acids consisting of linoleic acid (41.5% to 47.9%) and oleic acid (35.9% to 42.3%). Unlike many other oilseeds, the proportions of these two fatty acids in sesame oil are quite similar. Moreover, sesame oil contains less than 20% saturated fatty acids, mainly palmitic acid (7.9% to 12%) and stearic acid (4.8% to 6.1%) [6]. Thanks to the presence of active phytochemical compounds such acids, unsaturated fatty phytosterols, tocopherols, and lignans like sesamin, sesamol, and sesaminol, sesame oil is capable of counteracting reactive oxygen species. These antioxidant compounds help prevent oxidation and contribute to maintaining the oil's quality [7]. Various methods are used to extract oil from sesame seeds, including solvent extraction, cold pressing, and aqueous enzymatic

extraction. In recent years, aqueous enzymatic extraction has gained attention due to its specific advantages, such as improved product quality and reduced use of chemical solvents. This method employs enzymes to break down the plant cell wall simultaneously extract bioactive compounds such as oil and protein. By using selective enzymes, this process not only increases extraction yield but also enhances the flavor and aroma of the final products [8]. The plant cell wall is composed of cellulose, hemicellulose, pectin, and proteins. Enzymes can degrade the cell wall structure and release phenolic compounds, thereby boosting the yield of oil and other bioactive compounds [9]. The core principle of enzymatic extraction lies in the hydrolysis of the plant cell wall under optimal conditions. During this process, components of the cell wall bind to the active site of the enzyme, inducing a conformational change that facilitates stronger interaction between the enzyme's active site and the cell wall components. As a result, cell bonds are broken and bioactive compounds are released more easily [10]. This method is recognized as a green extraction technique. Factors such as ground seed size, water to substrate ratio, enzyme concentration, stirring speed, and others influence the process. Additionally, optimal conditions, including pH and enzyme temperature, play a crucial role in the efficiency of the method [11]. The final quality of the extracted oil is affected by factors such as the chemical composition of the oilseeds and particle size. Due to safety concerns and environmental regulations, the use of aqueous enzymatic extraction is expanding. Compared to solvent extraction, this method is not only safer and more environmentally friendly, but also more economical. Furthermore, it requires less energy and has lower operational costs, making it a more efficient approach. Another advantage is the generation of valuable by products such as oilseed cake, fiber, and protein, owing to the mild operational conditions. Additionally, this

method allows for the separation of phospholipids from the oil, eliminating the need for a degumming step and reducing overall processing costs [8].

1.1. Research Objective

This study was conducted to investigate the effect of using pepsin and cellulase enzymes in the aqueous enzymatic extraction process of sesame oil. While cellulase has previously been applied mainly in combination with other enzymes, in this research, its effect is examined independently. Moreover, for the first time, pepsin is used alone in the extraction of sesame oil. The main objectives of this research include evaluating the impact of these enzymes on oil extraction yield and analyzing the physicochemical properties of the extracted oil. The focus is placed on key indicators such as oxidative stability, bioactive compounds and the preservation of essential components such as essential fatty acids. This study aims to demonstrate that the application of this innovative method can lead to improved oil yield and overall quality, and potentially serve as a viable alternative to traditional chemical extraction methods.

2- Materials and Methods

2.1. Sample preparation

Sesame seeds were from the Agricultural Jihad Center of Behbahan County. Pepsin enzyme was purchased from Merck, and cellulase enzyme was supplied Bioluence Company. For sesame extraction, two aqueous enzymatic methods were employed using cellulase and pepsin enzymes independently. 10 g of ground sesame seeds were placed in a 250 mL Erlenmeyer flask with 20 mL of distilled water at a 1:2 ratio. The pH was adjusted to the optimum for each enzyme using 0.1 M sodium hydroxide and hydrochloric acid solutions (pH 7 for cellulase and pH 2 for pepsin). The enzymes were added at their optimal concentrations (2% w/w for pepsin and 3% w/w for cellulase). The mixture was incubated in a shaking incubator at 40°C and 150 rpm for 6 h. Afterwards, the mixture was transferred to Falcon tubes and centrifuged at 10,000 rpm. The upper phase containing the oil was separated using a micropipette and the enzymes were inactivated by heating at 90°C for 15 min in an oven. Samples were then stored at 4°C for subsequent analyses [12].

2.2. Extraction by maceration

To analyze the phenolic and antioxidant compounds soluble in alcohol, sesame oil extraction by maceration was performed using 70% ethanol. For this purpose, 2 g of sesame oil were mixed with 20 mL of 70% ethanol and incubated for 24 h at room temperature in a shaking incubator. The samples were then centrifuged at 8,000 rpm for 10 min, and the alcoholic extract was separated after centrifugation [13].

2.3. Oil extraction yield measurement

The oil extraction yield for all extraction methods was calculated according to the AOCS Af 3-54 standard using the following formula [14]:

Oil extraction yield(%) $= \frac{\text{Weight of extracted oil(g)}}{\text{Weight of initial sample (g)}} \times 100$

2.4. Fatty acid analysis

The extracted oils were obtained using petroleum ether as the organic solvent. Fatty acid analysis was performed using a Gas Chromatography-Mass Spectrometry (GC-MS) system, model 6890 GC coupled with a 5973N MS detector (Agilent, USA). The instrument was equipped with an HP-5MS capillary column (5% methyl siloxane stationary phase), 30 meters in length and 0.25 mm internal diameter. The ionization energy of the mass spectrometer was set at 70 electron volts (eV). A volume of 1–2 μ L of pure sample was injected using a 10 μ L

syringe. The oven temperature was initially set at 50°C and held for 3 min. Then, the temperature was increased at a rate of 10°C/min to 120°C, 150°C, and finally 190°C, with a 3-min hold at each temperature stage [15].

2.5. Antioxidant activity assessment by DPPH method

The antioxidant activity of the extracted oils was measured using the DPPH assay according to the Brand-Williams method. Initially, 0.1 mL of the extract was added to a test tube, followed by 3.9 mL of DPPH solution (0.002% concentration in 98% methanol). The samples were vortexed for a few seconds and then incubated in the dark for 30 min to allow the reaction to occur. During this process, the purple color of DPPH changed to yellow. absorbance of the samples was measured at a wavelength of 517 nm using spectrophotometer. The percentage of antioxidant activity was calculated using the following formula [16]:

Antioxidant activity $\% = (Control \ absorption - Sample \ absorption / Control \ absorption) *100$

2.6. Total Phenolic Content Measurement

The total phenolic content was determined using a modified Folin Ciocalteu method. To 0.2 mL of the prepared extract, 1.5 mL of 10% Folin reagent was added. After resting for 6 min, 1.5 mL of 5% sodium carbonate solution was added, and the mixture was incubated in the dark for 60 min. The resulting dark blue color indicated the presence of phenolic compounds. The absorbance was then measured at 760 nm using a spectrophotometer. The total phenolic content was expressed as mg of gallic acid equivalents per 100 g of sample [17].

2.7. Vitamin E Content Measurement

The vitamin E content in sesame oil was measured using an HPLC system. The mobile phase consisted of 100% methanol with a flow rate of 1 mL/min. A reversedphase column (250 mm length, 4.6 mm internal diameter, 5 µm particle size) and a UV detector set at 285 nm wavelength were used. The injection volume was 20 µL. For vitamin E extraction, 1 g of sesame oil was mixed with 2 mL of 12% potassium hydroxide and incubated in an oven at 82°C for 20 min. After cooling, 5 mL of hexane was added, and the mixture was centrifuged at 2000 rpm for 15 min. The upper hexane layer was separated, and the solvent was evaporated at 42°C using a rotary evaporator. The residue was dissolved in 420 µL of methanol and injected into the **Quantitative** analysis HPLC. performed by comparing the chromatograms of each sample with corresponding standard chromatograms. Vitamin E concentration was expressed as mg per 100 g of oil [18].

2.8. Soap Number Determination

For the determination of the soap number, 0.5 g of each oil sample was mixed with 10 mL of KOH solution (2.8 g KOH dissolved in 100 mL of ethanol/water solution at a 1:1 ratio) and placed in a water bath at 80–85°C for 30 min. The progress of the reaction was indicated by the solution turning purple. After cooling to room temperature, 1–2 drops of 1% phenolphthalein indicator were added to each sample. Titration was then performed with 0.5 M hydrochloric acid (HCl) until the solution color changed from purple to colorless at the equivalence point. The same procedure was repeated for a blank solution containing only KOH solution [19]. The soap number was calculated using the following formula and expressed as milligrams of potassium hydroxide per 100 g of sesame oil:

Saponification value(mgg⁻¹) =
$$\frac{28(5 \times (A - B) \times F)}{S}$$

A = volume of HCl used for blank titration (mL)

B = volume of HCl used for sample titration (mL)

F = normality factor of 0.5 M HCl

S = sample weight (g)

2.9. Acid Value Determination

In this study, the acid value test according to the AOCS method was used to calculate the percentage of free fatty acids resulting from triglyceride hydrolysis. In a 250 mL volumetric flask, 1 gram of oil was dissolved in 10 mL of 96% ethanol. Then, 2 drops of 1% phenolphthalein indicator were added. The oil samples were titrated with 0.1 M potassium hydroxide (KOH) solution until a pale pink color appeared. The volume of titrant used was recorded, and the free fatty acid content was calculated using the following formula [14]:

Acid Value =
$$\frac{(V - B) \times N \times 56.1}{W}$$

B = volume of KOH used for blank titration (mL)

V = volume of KOH used for sample titration (mL)

N = normality of KOH (0.1 N)

W = weight of the sample (g)

2.10. Iodine Value Determination

The iodine value was measured using the Hanus method according to AOAC standard 920-158. In this method, 0.25 g of oil was weighed into a 250 mL Erlenmeyer flask, followed by the addition of 10 mL of chloroform. The sample was dissolved by shaking the flask. Then, 2.5 mL of Hanus reagent was added, and the flask was kept

in the dark for 30 min. After this period, 10 mL of 15% potassium iodide solution and then 10 mL of distilled water were added to the flask. Finally, the sample was titrated dropwise with 0.1 M sodium thiosulfate solution while continuously swirling the flask until the solution color changed to brick yellow. A few drops of starch indicator were then added, and titration continued until the blue color completely disappeared. The volume of sodium thiosulfate used was recorded. A blank test was conducted under the same conditions without adding the oil sample. The iodine value was calculated using the formula below [14]:

$$IV = \frac{(V_2 - V_1) \times N \times 12.69}{m}$$

IV = iodine value (g iodine absorbed per 100 g oil)

 V_1 = volume of sodium thiosulfate solution used for oil sample titration (mL)

 V_2 = volume of sodium thiosulfate solution used for blank titration (mL)

N = normality of sodium thiosulfate solution

m = mass of oil sample (g)

2.11. Determination of unsaponifiable matter in extracted oils

According to AOCS Official Method Ca 6a-40, 5 grams of oil were placed in a round-bottom flask, followed by the addition of 50 mL of 1 mol/L ethanolic potassium hydroxide (KOH) solution and a few boiling stones. The mixture was refluxed to complete the saponification process. After cooling, the contents of the flask were transferred to a 500 mL separatory funnel. The flask was rinsed

three times with diethyl ether, and the rinses were added to the funnel. The funnel was allowed to stand until two distinct layers formed. The lower aqueous layer was The upper etheric discarded. containing the unsaponifiable matter and was transferred to a rotary evaporator. The solvent was evaporated at 75 °C. To achieve a constant weight, the residue was dried in an oven at 103 °C and then placed in a desiccator. A blank test (without oil) was performed under the same conditions. The percentage unsaponifiable matter was calculated using the following equation [14]:

Unsaponifiable matter (%) =
$$\frac{m_1 - m_2 - m_3}{m} \times 100$$

2.12. Determination of peroxide value of extracted oils

The peroxide value (PV) was determined according to AOCS Official Method Cd 8-53. For this purpose, 0.5 g of the oil sample was mixed with 5 mL of an acetic acid chloroform solution in a 3:2 ratio. The container was shaken to dissolve the sample. Then, 0.5 mL of saturated potassium iodide solution was added, and the mixture was kept in a dark environment for exactly 1 min. After that, 30 mL of distilled water and a few drops of starch indicator were added. The mixture was then titrated with 0.01 N sodium thiosulfate solution until the blue color completely disappeared. The same procedure was performed for the blank sample (without oil) [14].

$$PV = \frac{(S - B) \times N \times 1000}{W}$$

PV = Peroxide value (milliequivalents of peroxide per kilogram of oil)

S = Volume of sodium thiosulfate used for the sample (mL)

B = Volume of sodium thiosulfate used for the blank (mL)

N = Normality of sodium thiosulfate solution

W = Weight of the oil sample (g)

2.13. Determination of Anisidine Value

The anisidine value was measured according to ISO 6885. For preparation of the test solution, 1 g of oil was weighed into a 25 mL volumetric flask and diluted to volume with iso octane. The absorbance of the sample solution was measured using a spectrophotometer via two procedures: First, 5 mL of the test solution was mixed with 1 mL of glacial acetic acid. After 8 min of incubation in the dark at 23 °C, the solution was transferred to a clean, dry cuvette within 2 min. After 10 min, the absorbance at 350 nm was measured and recorded as the absorbance of the non reacted test solution (A₀). Second, 5 mL of the test solution was mixed with 1 mL of panisidine reagent. After 8 min of incubation in the dark at 23 °C, the solution was transferred to the cuvette and its absorbance at 350 nm was recorded as the reacted test solution (A₁). To determine the absorbance of the blank, 5 mL of iso octane was mixed with 1 mL of p-anisidine reagent, and after 10 min of reaction, the absorbance at 350 nm was measured (A2). The anisidine value (Q) was calculated using the following equation [20]:

$$Q = \frac{100 \times QV \times [1.2 \times (A_2 - A_1 - A_0)]}{m}$$

Q = Anisidine value (mg per g of sample)

V = Final volume of the sample solution (25 mL)

 A_0 = Absorbance of the non-reacted sample

 A_1 = Absorbance of the reacted sample

 A_2 = Absorbance of the blank

m = Weight of the sample (g)

2.14. Statistical Analysis

Statistical analysis of the data was performed using SPSS software version 20. The mean values were calculated based on three independent replicates. Duncan's multiple range test was used to compare the means. Graphs of the means were plotted using Microsoft Excel.

3.1. Changes in oil yield

The results of the comparison of mean oil yield from sesame extracted by different

methods showed that the oil yield increased in sesame oil extracted using cellulase and pepsin enzymes compared to the control sample. The highest oil yield was observed in the sample extracted with cellulase enzyme (p < 0.05) (Figure 1). Aqueousenzymatic extraction facilitates oil release through the breakdown of the plant cell wall. The yield of oil extraction depends on various parameters such as particle size, enzyme type and concentration, water-toseed ratio, extraction time, temperature, and pH [21]. Extraction of oil using cellulase and pepsin enzymes from sesame seeds shows that cellulase enzymes degrade the cell wall, releasing the oil trapped within protein and polysaccharide layers [22]. Additionally, pepsin hydrolyzes the peptide bonds in polypeptide chains where oil droplets are accumulated, breaking them into shorter peptide fragments. This process contributes to the increased oil yield in enzyme-assisted extraction [23].

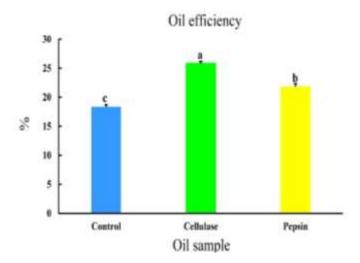


Figure 1. Yield of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.2. Changes in fatty acid composition

Based on the GC-MS data of sesame seed oil extracted using different methods, four main fatty acids were identified: palmitic acid, linoleic acid, oleic acid, and stearic acid. In the control condition, an appropriate amount of each of these fatty acids was present, and no significant difference was found compared to the oils extracted using cellulase and pepsin enzymes (Figure 2). Fatty acids are important indicators for evaluating the quality and stability of oils. In sesame oil, oleic acid and linoleic acid make up more than 80% of the total fatty acids and are considered to have high nutritional value

[24]. Polyunsaturated fatty acids, such as linoleic acid, help reduce cholesterol and prevent atherosclerosis [25,26]. Enzymatic extraction does not affect the fatty acid composition, whereas factors such as heat and oxidation can alter their structure. Low extraction temperatures and short processing times prevent the oxidation and

degradation of unsaturated fatty acids and help preserve sensitive compounds [27]. The cellulase enzyme increases oil yield by breaking down the seed cell wall without damaging the fatty acid composition. Similarly, pepsin does not directly interact with lipids or fatty acids and does not affect the chemical composition of the oil [28].

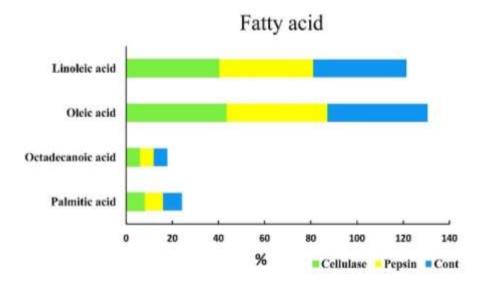


Figure 2. Content of main fatty acids in extracted sesame oil.

3.3. Changes in antioxidant capacity (DPPH method)

The results of the mean comparison of antioxidant capacity in sesame oil extracted using different methods showed that the antioxidant capacity increased in the oils extracted with pepsin and cellulase enzymes compared to the control sample. The highest antioxidant capacity was observed in the sesame oil extracted using pepsin enzyme (p < 0.05) (Figure 3). DPPH is a stable free radical with maximum absorption at 520 nm. When DPPH encounters a proton donor, the free radical is neutralized, resulting in a decrease in

absorbance. Therefore, the antioxidant activity of a substance is related to its ability to scavenge DPPH radicals [29]. Sesame oil extracted by the aqueousenzymatic method exhibits higher antioxidant capacity compared to methods. conventional This method enhances the release of more bioactive compounds such as phenols, tocopherols, substances. carotenes. xanthophylls, and chlorophylls into the oil phase, improving flavor quality and product shelf life. Additionally, the reduced complexation of polyphenols with seed polysaccharides further increases antioxidant capacity of the oil [30].

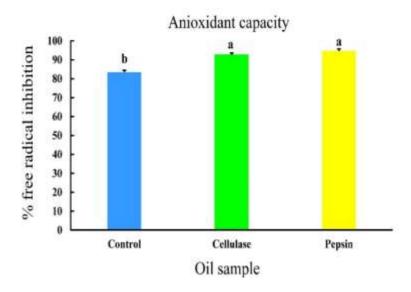


Figure 3. Content of antioxidant capacity in extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.4. Changes in total phenolic content

The results of the mean comparison of total phenolic content in sesame oil extracted by different methods showed that the phenolic content increased in the oils extracted using cellulase and pepsin enzymes compared to the control sample. The highest phenolic content was observed in the oil extracted with pepsin enzyme (p < 0.05) (Figure 4). Phenolic compounds are recognized as natural antioxidants due to their ability to

neutralize free radicals and inhibit their formation. Additionally, their capacity to chelate metal ions contributes to the inhibition of lipid peroxidation [31]. Enzymatic pretreatment in oil extraction promotes the hydrolysis of cell walls, releasing phenolic compounds and enhancing the bioactive components of the oil. This process, by reducing the complexation of phenolic compounds with seed polysaccharides, facilitates their transfer into the oil phase [32].

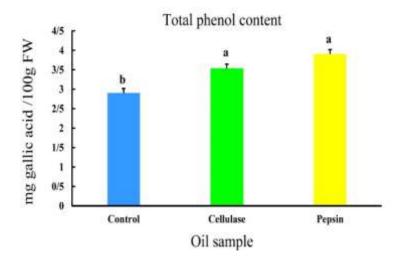


Figure 4. Total phenolic content of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.5. Changes in vitamin E content

The results of the comparison of the mean Vitamin E content in sesame oil extracted by different methods showed that the Vitamin E levels in oils extracted using cellulase and pepsin enzymes increased compared to the control sample (p < 0.05) (Figure 5). Vitamin E, which includes tocopherols and tocotrienols, prevents oxidative degradation through its antioxidant properties and stabilizes oils

and fats [33]. During enzymatic extraction, the hydrolysis of the seed cell walls leads to the increased release of tocopherols and phenolic compounds, thereby enhancing the bioactive components of the oil. This increase is likely due to the reduction of complexes formed between bioactive compounds and seed polysaccharides, facilitating their transfer into the oil phase [30]. Additionally, pepsin enzyme increases the Vitamin E content by breaking the bonds between Vitamin E and proteins [34].

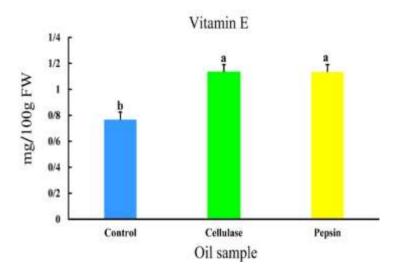


Figure 5. Vitamin E content of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3. Changes in Soap Number

The comparison of the soap number of sesame oil extracted by different methods showed no significant difference in the soap number of sesame oils extracted with cellulase and pepsin enzymes compared to the control sample (p > 0.05) (Figure 6). The soap number is a key indicator used to identify oils and fats, estimating the average chain length of fatty acids [35]. This index has an inverse relationship with the fatty acid chain length; a decrease in the soap number indicates an increase in the

chain length of fatty acids. Long-chain fatty acids, due to their higher molecular weight, have fewer molecules per gram of oil and therefore reauire less alkali saponification [36]. Different extraction methods did not significantly affect the soap number because the fatty acid composition and chain length in oils with oleic-linoleic acid profiles are almost identical [12]. The aqueous-enzymatic extraction method, by hydrolyzing the cell wall and oleosome membrane, releases the oil but does not change the fatty acid composition or soap number [37].

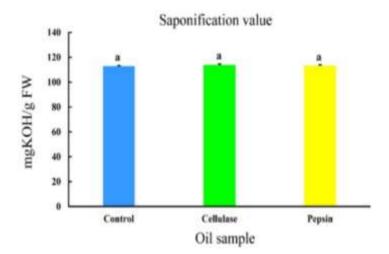


Figure 6. Saponification value of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.4. Changes in Acid Value

The comparison of acid values of sesame oil extracted by different methods showed no significant difference in the acid values of sesame oils extracted with cellulase and pepsin enzymes compared to the control sample (p > 0.05) (Figure 7). Free fatty acids are secondary compounds in edible oils, and their increase negatively affects oil quality, including aroma, appearance, and stability. Therefore, their levels must remain within standard limits. Low free

fatty acid levels indicate the absence of hydrolytic reactions that could cause rancidity and triglyceride breakdown. The enzymatically extracted oil, due to its low free fatty acid content and an average of 92.11% acylglycerols, confirms the high efficiency of the aqueous-enzymatic extraction method in preserving and enhancing oil quality [38]. In this method, the short extraction time and low temperature are insufficient for hydrolyzing triglycerides into smaller components, thus the acid value remains unchanged [39].

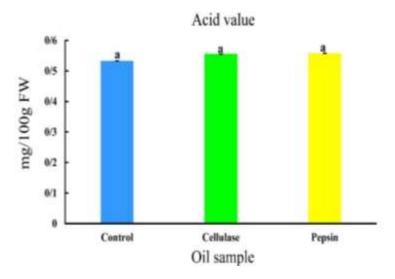


Figure 7. Acid value of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.5. Changes in iodine value

The comparison of iodine values of sesame oil extracted by different methods showed no significant difference in the iodine values of sesame oils extracted with cellulase and pepsin enzymes compared to the control sample (p > 0.05) (Figure 8). The iodine value is an index used to measure the degree of unsaturation and the

number of double bonds in fats and oils. A decrease in iodine value indicates a reduction in double bonds and increased oil oxidation. This value provides information about the structure, nutritional value, and oxidative stability of oils. Higher iodine values (greater unsaturation) indicate increased susceptibility to oxidation [40]. Iodine value is typically used to evaluate oil quality and is not affected by extraction methods [12]. It depends only on the seed type [41].

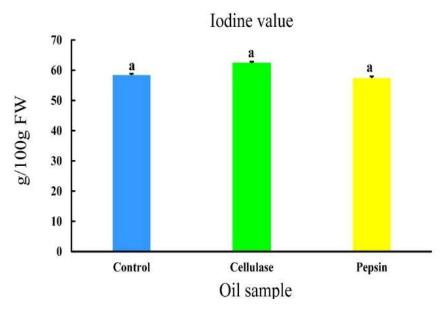


Figure 8. The Iodine value of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.6. Changes in unsaponifiable matter

The comparison of unsaponifiable matter in sesame oil extracted by different methods showed no significant difference in unsaponifiable content between sesame oils extracted with cellulase and pepsin enzymes and the control sample (p > 0.05) (Figure 9). In enzymatic extraction, reactions such as hydrolysis of proteins and carbohydrates in seeds occur, which can increase unsaponifiable matter in the oil

[42]. Compounds such as phenolics, lignans, sterols, tocopherols, and considered hydrocarbons are unsaponifiable and have significant importance in oils [43]. In this study, no significant difference was observed in the amount of unsaponifiable matter extracted by different methods, indicating these compounds were not affected by the extraction technique. Moreover. composition enzyme and conditions in aqueous-enzymatic extraction significantly influence the amount of unsaponifiable matter extracted [12].

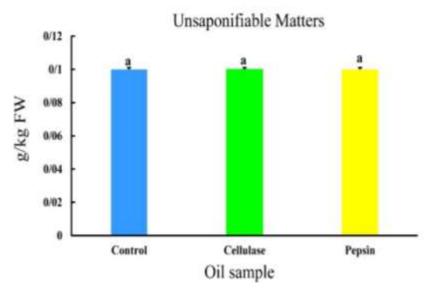


Figure 9. Unsaponifiable matter of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.7. Changes in peroxide value

The comparison of peroxide values of sesame oil extracted by different methods showed a decrease in peroxide value in sesame oils extracted with cellulase and pepsin enzymes compared to the control sample (p > 0.05) (Figure 10). Peroxide value indicates the presence hydroperoxide compounds formed oxidation of edible lipids and serves as a primary quality assessment measure of oils. Sesame oil naturally has a low peroxide value and high oxidative stability, due to the presence of natural antioxidants such as sesamol and sesamolin and its high

antioxidant activity [22]. The enzymatic extraction method, by increasing bioactive compounds in the oil, enhances oxidative stability and leads to a reduction in peroxide value. The mild temperature (40°C) used during extraction also helps maintain oil stability against oxidation [44]. Protease enzymes, by hydrolyzing peptide bonds in proteins, increase the oil's antioxidant capacity, thereby reducing value [45]. Additionally, peroxide enzymatic extraction with cellulase breaks down the cell wall, releasing more bioactive compounds (such as phenolics, tocopherols, carotenoids, xanthophylls, and chlorophylls) into the oil phase, which contribute to lowering peroxide value due to their antioxidant properties [30].

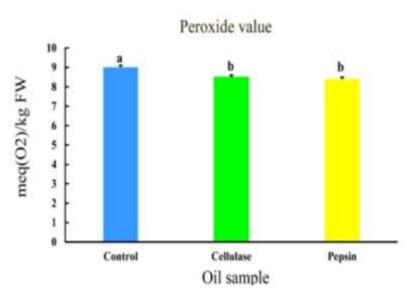


Figure 10. Peroxide value content of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

3.8. Changes in anisidine value

The comparison of anisidine values of sesame oil extracted by different methods showed a decrease in anisidine value in sesame oils extracted with cellulase and pepsin enzymes compared to the control sample (p > 0.05) (Figure 11). Anisidine value is an important index for controlling and assessing the quality of edible oils and indicates secondary oxidation or oil rancidity. It reflects the odor and stage of oil oxidation. A decrease in anisidine value

indicates lower oxidative spoilage and absence of unpleasant rancid compounds [6]. Enzymatic extraction methods increase phenolic compounds by breaking down the seed cell wall structure. Phenolic compounds in enzymatically extracted oil act as antioxidants and reduce anisidine value. This method increases oil resistance to oxidation due to higher extraction of phenolic and tocopherol compounds [12].

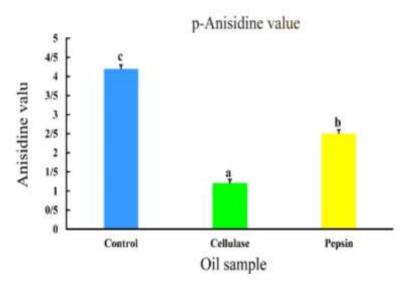


Figure 11. p-Anisidine value content of extracted sesame oil. The mentioned values are the average of 3 repetitions \pm standard error. Similar letters indicate no significant difference between the means.

4-Conclusion

The results of this study demonstrate that the use of the aqueous-enzymatic extraction method employing cellulase and pepsin enzymes has a significant impact on improving the extraction yield of sesame oil and enhancing its quality parameters. This method not only increases the oil extraction efficiency but also preserves the main compounds present in the oil, such as essential fatty acids, positively affecting the final product quality. Additionally, the oxidative stability of the oil is noticeably improved, and the content of bioactive compounds, such as total phenolics, is which contributes increased. strengthening the antioxidant properties and nutritional value of the oil. The reduction in anisidine value further indicates improved oxidative characteristics and a decrease in lipid degradation during the extraction process. These findings highlight that the aqueousenzymatic method, especially with the enzymes used, can serve as an innovative, efficient, and environmentally friendly technology for extracting high-quality sesame oil. This method reduces the reliance chemical solvents on minimizes environmental waste, making it not only economically viable but also environmentally commendable.

5-Acknowledgment

The authors of the present article would like to express their sincere gratitude to Shahid Chamran University of Ahvaz for its financial and moral support of this research project.

6-References

[1] Batool R, Batool T, Nisa FU, Khalid F, Asghar Z. 2024, Ethnobotanical, pharmacological, and therapeutic importance of sesame seeds along with their role in the biogenic synthesis of important chemicals. In: Therapeutic and Pharmacological Applications of Ethnobotany. IGI Global, 2024, p. 241–273.

- [2] El Hanafi L, Mssillou I, Nekhla H, Bessi A, Bakour M, Laaroussi H, et al. 2023, Effects of dehulling and roasting on the phytochemical composition and biological activities of Sesamum indicum L. seeds. J Chem, 2023, 2023:1–18.
- [3] Li M, Luo J, Nawaz MA, Stockmann R, Buckow R, Barrow C, et al. 2024, Phytochemistry, bioaccessibility, and bioactivities of sesame seeds: An overview. Food Rev Int, 2024, 40(1):309–35.
- [4] Pusadkar PP, Kokiladevi E, Bonde SV, Mohite NR. 2015, Sesame (Sesamum indicum L.) importance and its high quality seed oil: A review. Trends Biosci, 2015, 8(15):3900–6.
- [5] Abdiani N, Kolahi M, Javaheriyan M, Sabaeian M. 2024, Effect of storage conditions on nutritional value, oil content, and oil composition of sesame seeds. J Agric Food Res, 2024, 16:101117.
- [6] Shahidi F., 2005, Bailey's industrial oil and fat products, John Wiley & Sons, Champaign, USA, Vol. 6, pp. 1–500
- [7] Nigam D, Singh C, Tiwari U. 2015, Evaluation of in vitro study of antioxidant and antibacterial activities of methanolic seed extract of Sesamum indicum. J Pharmacogn Phytochem, 2015, 3(5):88–92.
- [8] Yusoff MM, Gordon MH, Niranjan K. 2015, Aqueous enzyme-assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends Food Sci Technol, 2015, 41(1):60–82.
- [9] Miron TL, Herrero M, Ibáñez E. 2013, Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J Chromatogr A, 2013, 1288:1–9.
- [10] Nadar SS, Rao P, Rathod VK. 2018, Enzyme-assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res Int, 2018, 108:309–30.
- [11] Abdulkarim SM, Lai OM, Muhammad SKS, Long K, Ghazali HM. 2006, Use of enzymes to enhance oil recovery during aqueous extraction of Moringa oleifera seed oil. J Food Lipids, 2006, 13(2):113–30.
- [12] Tirgarian B, Farmani J, Milani JM. 2019, Enzyme-assisted aqueous extraction of oil and protein hydrolysate from sesame seed. Food Meas, 2019, 13(3):2118–29.
- [13] Dravie EE, Kortei NK, Essuman EK, Tettey CO, Boakye AA, Hunkpe G. 2020, Antioxidant, phytochemical, and physicochemical properties of sesame seed (Sesamum indicum L.). Sci Afr, 2020, 8:e00349.
- [14] Brühl L. 1996, Official methods and recommended practices of the American Oil Chemist's Society: Physical and chemical characteristics of oils, fats and waxes. Section I. Champaign: AOCS Press, 1996, 1997.
- [15] Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G. 2008, Optimization of conversion of

- waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew Energy, 2008, 33(7):1678–84.
- [16] Brand-Williams W, Cuvelier M-E, Berset C. 1995, Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol, 1995, 28(1):25–30.
- [17] de Magalhães BEA, de Andrade Santana D, de Jesus Silva IM, Minho LAC, Gomes MA, da Silva Almeida JRG, et al. 2020, Determination of phenolic composition of oilseed whole flours by HPLC-DAD with evaluation using chemometric analyses. Microchem J, 2020, 155:104683.
- [18] Aguilar Urbano M, Pineda Priego M, Prieto P. 2013, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E1.
- [19] Ano AAR, Koffi EN, Kassi BB, Ocho-Anin Atchibri L. 2019, Effect of solvent and press extractions on physicochemical properties of oil extracted from Dacryodes edulis fruit. Asian J Sci Technol, 2019, 9(3):9559–64.
- [20] Chen Y, Fu Y, Li P, Xi H, Zhao W, Wang D, et al. 2022, Characterization of traditional Chinese sesame oil by using headspace solid-phase microextraction/gas chromatography—mass spectrometry, electronic nose, sensory evaluation, and RapidOxy. Foods, 2022, 11(22):3555.
- [21] Allay A, Benkirane C, Rbah Y, Moumen AB, Taaifi Y, Belhaj K, et al. 2024, Combined effect of protease, hemicellulase and pectinase on the quality of hemp seed oil (Cannabis sativa L.) obtained by aqueous enzymatic extraction as an ecofriendly method. J Oleo Sci, 2024, 73(7):963–76.
- [22] Abdehvand ZZ, Javaherian M, Kolahi M, Sabaeian M. 2025, Evaluation of the quality and phytochemical composition of sesame oil extracted using cellulase and pepsin enzymes. Appl Food Res, 2025, 5(2):101046.
- [23] Liu Jun LJ, Gasmalla MAA, Li PengFei LP, Yang Rui Jin YR. 2016, Enzyme-assisted extraction processing from oilseeds: Principle, processing, and application.
- [24] Mondal N, Bhat KV, Srivastava PS. 2010, Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc, 2010, 87(11):1263–9.
- [25] Naghisharifi H, Kolahi M, Javaheriyan M, Zargar B. 2024, Oxidative stress is the active pathway in canola seed aging: the role of oxidative stress in the development of seedlings grown from aged canola seed. Plant Stress, 2024, 11:100313.
- [26] Juvvi P, Debnath S. 2020, Enzyme-assisted three-phase partitioning: An efficient alternative for oil extraction from sesame (Sesamum indicum L.). Grasas Aceites, 2020, 71(1):e346.
- [27] Lu X, Du H, Liu Y, Wang Y, Li D, Wang L. 2022, Effect of ultrasound-assisted solvent enzymatic extraction on fatty acid profiles,

- physicochemical properties, bioactive compounds, and antioxidant activity of Elaeagnus mollis oil. Foods, 2022, 11(3):359.
- [28] Zhuang Y, Dong J, He X, Wang J, Li C, Dong L, et al. 2022, Impact of heating temperature and fatty acid type on the formation of lipid oxidation products during thermal processing. Front Nutr, 2022, 9:913297.
- [29] Wang Y, Wang Z, Cheng S, Han F. 2008, Aqueous enzymatic extraction of oil and protein hydrolysates from peanut. Food Sci Technol Res, 2008, 14(6):533–7.
- [30] Latif S, Anwar F. 2009, Effect of aqueous enzymatic processes on sunflower oil quality. J Am Oil Chem Soc, 2009, 86(4):393–400.
- [31] Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO. 2020, Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci World J, 2020, 2020:6792069.
- [32] Latif S, Anwar F. 2011, Aqueous enzymatic sesame oil and protein extraction. Food Chem, 2011, 125(2):679–84.
- [33] Hamid F, Kamarudin H. 2017, The quality of oil extracted from palm pressed fibre using aqueous enzymatic treatment. J Oil Palm Res, 2017, 29(4):588–93.
- [34] Olatidoye OP. 2021, Effect of temperature and time combinations on colour characteristics, mineral and vitamin content of raw and roasted cashew kernel. J Food Process Technol, 2021, 12:554.
- [35] Hasenhuettl GL, Hartel RW., 2019, Food emulsifiers and their applications, Springer International Publishing, Cham, Switzerland, pp. 1–600
- [36] Pike OA, O'Keefe S. 2017, Fat characterization. In: Nielsen SS, editor. Food analysis. Cham: Springer International Publishing, 2017, p. 407–29.
- [37] Ribeiro SAO, Nicacio AE, Zanqui AB, Biondo PBF, de Abreu-Filho BA, Visentainer JV, et al. 2016, Improvements in the quality of sesame oil obtained by a green extraction method using enzymes. LWT Food Sci Technol, 2016, 65:464–70.
- [38] Shahidi F., 2005, Quality assurance of fats and oils, Wiley, Champaign, USA, pp. 1–300
- [39] De Aquino DS, Roders C, Vessoni AM, Stevanato N, Da Silva C. 2022, Assessment of obtaining sunflower oil from enzymatic aqueous extraction using protease enzymes. Grasas Aceites, 2022, 73(1):e452.
- [40] Chebet J, Kinyanjui T, Cheplogoi PK. 2016, Impact of frying on iodine value of vegetable oils before and after deep frying in different types of food in Kenya. J Sci Innov Res, 2016, 5(5):193–6.
- [41] Najafian L, Ghodsvali A, Khodaparast MH, Diosady LL. 2009, Aqueous extraction of

- [42] virgin olive oil using industrial enzymes. Food Res Int, 2009, 42(1):171–5.
- [43] Puangsri T, Abdulkarim SM, Ghazali HM. 2005, Properties of Carica papaya L. (papaya) seed oil following extractions using solvent and aqueous enzymatic methods. J Food Lipids, 2005, 12(1):62–76.
- [44] Mastaghi A, Yasaman Q, Gharachorlu. 2020, Evaluation of Chemical Properties of Oil Extracted from Three Chia Seed Varieties. *Food Science and Nutrition*, 18(Winter 99). (In Persian).
- [45] Shabani J, Jila R, Vanak P, Gholami. 2019, Comparative Study of Oxidative Stability, Peroxide Value, Iodine Number, and Antioxidant Activity of Synthetic Antioxidants Extracted from Edible Oils. *Innovations in Food Science and Technology*, 11(4). (In Persian)
- [46] Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. 2022, Extracting total anthocyanin from purple sweet potato using an effective ultrasound-assisted compound enzymatic extraction technology. Molecules, 2022, 27(14):4344.

مجله علوم و صنایع غذایی ایران

سایت مجله: www.fsct.modares.ac.ir

مقاله علمي_پژوهشي

بررسی اثر استخراج آبی-آنزیمی با استفاده از آنزیم های سلولاز و پپسین بر ترکیبات فیتوشیمیایی و خواص فيزيكو شيميايي روغن كنجد

زینب ظاهری عبده وند'، محمد جواهریان ۲، مریم کلاهی* ۳، محمد صبائیان^{4,5}

- ۱- دانشجوی کارشناسی ارشد گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
 - ۲- دانشیار گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
 - ۳- دانشیار گروه زیست شناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
 - ۴- استاد گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
 - مرکز تحقیقات لیزر و پلاسما، دانشگاه شهید چمران اهواز، ایران

چکیده اطلاعات مقاله

تاریخ های مقاله:

تاریخ دریافت: ۱٤٠٣/١٠/٣٠

/تاریخ پذیرش: ۱٤٠٤/٢/١٦

كلمات كليدى:

استخراج آبي-آنزيمي،

پپسین،

روغن،

سلو لاز،

كنجد.

* مسئول مكاتبات:

salvia20us@yahoo.com

كنجد (Sesamum indicum L.) به دليل دارا بودن تركيبات فيتوشيميايي ارزشمند مانند ليگنانها و اسیدهای چرب غیراشباع، از اهمیت تغذیهای و صنعتی بالایی برخوردار است. در این پژوهش، تأثیر روش آبی-آنزیمی با آنزیم سلولاز و پیسین بر استخراج روغن کنجد و شاخصهای کیفی آن بررسی شد. نتایج نشان داد که استفاده از آنزیمهای سلولاز و پیسین نه تنها بازده استخراج را افزایش

می دهد، بلکه ترکیبات زیست فعال نظیر فنول کل، ویتامین E و ظرفیت آنتی اکسیدانی را نیز بهبود می بخشد. شاخصهای کیفی شامل عدد اسیدی و عدد صابونی و مواد غیر قابل صابونی تغییر محسوسی نشان ندادند و در محدوده استاندارد باقی ماندند. عدد یدی نیز بدون تغییر ماند که نشان دهنده حفظ ترکیب اسیدهای چرب اصلی مانند اولئیک اسید، لینولئیک اسید و پالمیتیک اسید است. این پایداری به دلیل روش ملایم آبی-آنزیمی است که از تخریب ترکیبات جلوگیری می کند. از سوی دیگر، عدد یراکسید کاهش یافت و به ۸ میلی اکی والان بر کیلوگرم رسید که نشان دهنده بهبود پایداری اکسیداتیو روغن است. میزان ترکیبات غیر صابونی نیز افزایش معناداری نشان داد که

به ارتقای کیفیت کلی روغن کمک می کند. علاوه بر این، عدد آنیزیدین، که نشان دهنده اکسیداسیون .DO: 10.22034/FSCT.22.166.143 ثانویه روغن است، کاهش یافت، که کاهش این عدد نیز حکایت از کاهش اکسیداسیون اولیه و بهبود پایداری روغن دارد. این نتایج تأیید می کند که روش آبی-آنزیمی می تواند به عنوان یک

رویکرد سبز، کارآمد و با اثرات زیستمحیطی کمتر برای استخراج روغن کنجد استفاده شود.