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ABSTRACT ARTICLE INFO  

In this research, artificial neural networks (ANN) was presented to predict 

changes in moisture and density of shrimp during hot air frying process (at 

three temperatures of 140, 160 and 180 degrees Celsius for 15 minutes). 

Neural networks in the form of multilayer perceptron (MLP) with sigmoid 

tangent transfer function in the hidden layer and linear transfer function in 

the output layer was designed to predict moisture (with two inputs: 

temperature and time) and density (with three inputs: temperature, time and 

moisture) in MATLAB software. Different backpropagation algorithms 

include Levenberg-Marquardt, Gradient descent, Gradient descent with 

adaptive learning rate, Adaptive learning rate backpropagation, Gradient 

descent with momentum, and Scaled conjugate gradient. The structure of the 

models was validated by calculating the coefficient of determination (R2), 

root mean square error (RMSE) and mean absolute error (MAE). Finally, the 

importance of the inputs in terms of the effect on the output variable for 

predicting moisture and density was investigated by designing the default 

hyperbolic tangent neural networks in SPSS software. The results showed 

that with the decrease in moisture and the development of pores in shrimp, 

the density of the product gradually decreased during hot air frying, and with 

the increase in the temperature of the process, a further decrease in density 

was observed. In the moisture model, the backpropagation algorithm of 

Gradient descent with momentum (R2=0.989, RMSE=0.171, MAE=0.131) 

and in the density model, the Levenberg-Marquardt algorithm (R2=0.974, 

RMSE=0.0096, MAE=0.0066) showed the minimum error in training. In the 

moisture neurocomputing, the importance of time and temperature variable 

was equal to 0.883 and 0.117, respectively. In the density neurocomputing, 

the importance of moisture, time and temperature variables were 0.588, 

0.278 and 0.134, respectively. The Findings can be used in the design of 

artificial intelligence for controlling and creating automation in hot air fryers. 
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1- Introduction 
In recent years, due to the risks associated with a 

high-fat diet, there has been a growing tendency 

among consumers to seek healthier and safer 

alternatives to fried foods. Additionally, reducing oil 

consumption in fried foods has become a necessity. 

In this regard, replacing traditional frying methods 

with systems that provide similar characteristics to 

fried foods while ensuring higher nutritional quality 

and greater accessibility has been under 

investigation.  Therefore, hot air frying has been 

introduced as an alternative to deep frying. Hot air 

frying technology is available on the market [1], 

with some systems continuously evolving through 

constant aeration and direct contact with nonstick 

surfaces. However, all designs ensure uniform heat 

transfer between the air and the product being fried 

[2].  In this method, the product comes into direct 

contact with oil droplets dispersed in hot air, leading 

to dehydration and the gradual formation of a crust 

on the fried product [3]. Oil can be added before or 

during the process with a light coating on the food 

surface to enhance flavor, texture, and appearance 

[4]. Hot air fryers provide uniform heat transfer 

between the air and the frying product [2], resulting 

in consistent quality changes throughout the product 

[4]. Ultimately, hot air frying produces fried food 

with significantly lower oil content while 

maintaining moisture levels similar to deep fat 

frying [3]. In hot air frying, the product is heated 

evenly from all directions, and in most cases, there 

is no need to add oil [1]. Foods fried with hot air 

contain 80% less oil compared to deep fat frying [5], 

leading to 70% energy savings and a reduction in 

wastewater emissions from frying processes [6]. 

The American Heart Association recommends 

consuming various types of fish, shellfish, and 

shrimp at least twice a week [7]. Epidemiological 

studies have shown that in communities with a 

seafood-based diet, the incidence of heart attacks is 

significantly lower [8]. Shrimp meat has a high 

biological value due to its high digestibility (85%) 

compared to many other protein sources. The 

nutritional value of seafood for humans supports 

good health and optimal physiological function by 

providing all essential nutrients in sufficient 

amounts, thereby preventing nutrient deficiency-

related diseases and chronic diet-associated 

disorders [9]. Shrimp is rich in high-quality protein, 

calcium, essential minerals, and various bioavailable 

compounds, while being low in calories and fat. 

Shrimp contains high-quality components such as 

proteins, fats, and amino acids, which serve as 

indicators of optimal physiological and biochemical 

conditions. Aquatic animal fats are excellent sources 

of essential fatty acids that cannot be synthesized by 

the human body and are necessary for growth, 

reproduction, and vitamin synthesis. Therefore, 

processing of shrimp and other seafood products 

should be carried out in a way that preserves their 

high nutritional value for consumers [10; 11; 12; 

13]. 

One of the most important requirements for 

controlling a quality parameter is understanding its 

variations during the frying process, as any 

fluctuations in frying conditions can lead to 

undesirable quality changes [14]. Studying moisture 

changes and a biophysical indicator such as texture 

or density can be effective in controlling this modern 

process. Shrimp, being an irregularly shaped 

biological material, undergoes significant shrinkage 

during dehydration and frying. During dehydration, 

moisture escapes through the shrimp's pores, 

reducing the pore volume and apparent volume of 

the shrimp, thereby affecting the quality parameter 

of product density. The internal moisture gradient 

within the shrimp can also result in uneven 

shrinkage, leading to irregular deformation. 

Variations in moisture and density can influence the 

texture and dehydration behavior of the product 

during processing [15]. Understanding the textural 

properties of the product can also help predict its 

vulnerability during transportation [16]. 

Additionally, cooking shrimp can lead to a decrease 

in production yield, an important economic factor, 

due to changes in moisture content. During thermal 

processing, shrimp proteins undergo denaturation, 

which reduces their water-holding capacity, leading 

to lower production yield and dimensional changes 

in the product. Yield loss is a key criterion in 

implementing an appropriate cooking strategy for 

shrimp, and examining moisture and dimensional 

changes provides an informed approach to 

optimizing the cooking process. All these factors can 

be estimated using mathematical and intelligent 

models to assist industry professionals in optimizing 

shrimp thermal processing and improving quality. 

These models simplify the analysis of relationships 

between various influencing factors. For instance, 

"cooking charts" have been developed for large, 

medium, and small shrimp using mathematical 

models to achieve the target microbial level [17]. 

Overall, managing the quality characteristics of food 

products from the production stage to ensure control 

is a complex task [18]. Artificial Neural Networks 

(ANN) are a machine learning-based model 

designed similarly to the biological nervous system, 

including neurons, dendrites, and axons, and they 

can model complex nonlinear processes in the food 

industry. This method is an innovative approach to 

solving engineering problems and developing 

technology, offering advantages over mathematical 

modeling. ANN can be implemented in real-world 

engineering problems, significantly reducing time 

and costs [19]. 
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Researchers have studied the effect of hot air frying 

on the quality of seafood products such as sardine 

fish [20], fish cutlet [21], surimi lipids (fish 

products) [22], and fish [23]. Their findings indicate 

that hot air frying helps preserve the quality 

characteristics of seafood by reducing lipid 

degradation, leading to improved sensory evaluation 

from the consumer’s perspective. A review of the 

literature reveals that no studies have yet been 

conducted on hot air frying for shrimp. Additionally, 

artificial neural network (ANN) modeling for 

predicting moisture content and density in hot air 

frying has not been explored. However, in a previous 

study, the physical quality parameters of frozen 

shrimp were analyzed using ANN and genetic 

algorithms [24]. The input variables in this study 

included freezing rate, thawing rate, storage time, 

and shrimp thickness, while the output variables 

consisted of color and texture. The results showed 

that the GANN model provided better predictions 

than multiple linear regression (MLR) and 

backpropagation (BP), with the lowest RMSE and 

the highest R². 

The aim of this study was to utilize artificial neural 

network (ANN) to predict moisture content and 

density as two key quality indicators influencing the 

production yield of shrimp snacks. The first ANN 

model was designed to predict moisture content (one 

output variable) of shrimp, influenced by frying time 

and temperature in the hot air frying process (two 

input variables). The second ANN model was 

developed to predict density (one output variable), 

considering frying time, temperature, and moisture 

content (three input variables) based on 

experimental data. The significance of each input 

variable was also evaluated within the ANN 

structure. To ensure controlled conditions for 

analyzing the hot air frying process, the chemical 

composition and cross-sectional area of each shrimp 

were assumed to be uniform. Additionally, due to 

the minimal amount of oil added to the shrimp (0.01 

g per sample), its oil absorption variation was 

considered negligible. 

2-Materials and Methods 

 

1-2- Shrimp Preparation 

A sufficient quantity of fresh and uniform-sized 

whiteleg shrimp (Litopenaeus vannamei) was 

purchased from Gorgan shrimp farms in northern 

Iran (Bandar Torkaman Industrial Park, Shil Abzi 

Golestan Company). The shrimp were packaged in 

polyethylene bags and stored in a freezing chamber. 

Before sample preparation, the shrimp were thawed 

at room temperature for 10 minutes. After washing, 

they were cut into approximately cylindrical pieces 

with a diameter of 9 mm and a height of 15 mm. 

Prior to hot air frying, the initial weighing of the 

shrimp was conducted using a high-precision 

laboratory scale (Sartorius GCA803S) with an 

accuracy of 0.0001 g, and the weight was recorded. 

2-2-Hot Air Frying Process 

The hot air frying process was performed by 

spraying 0.01 g of oil onto the shrimp pieces and 

frying them at three different temperatures (140°C, 

160°C, and 180°C) using a hot air fryer (Geepas-

Gaf2708) for 15 minutes. The maximum hot air 

velocity in the fryer was 6.5 m/s, measured using a 

hot wire anemometer (TES 1341). The samples were 

removed from the fryer at three-minute intervals. 

After the frying process, the shrimp pieces were 

placed on absorbent paper for approximately two 

minutes to remove excess surface oil. The final 

weight of the hot air-fried shrimp was recorded. The 

frying process was conducted in triplicate. 

2-3-Moisture Content Measurement 

The moisture content of the fried shrimp samples 

was measured according to the standard procedure 

for moisture determination in fatty samples. The 

drying process was conducted in a hot air oven at 

103°C for 16 hours until a constant weight was 

achieved [25]. After drying, the sample-containing 

dish was cooled and weighed. The moisture content 

of the shrimp was calculated on a dry weight without 

oil basis using Equation (1). In this equation, M is 

the moisture content on a dry weight without oil 

basis (g/g, db), W0 is the constant weight of the 

metal dish (g), W1 is the weight of the dish with the 

sample before drying (g), W2  is the weight of the 

dish with the sample after drying (g) and Woil  is the 

weight of the sprayed oil (0.01 g) [26]. 

      

      

      

      

  

)                 

2-4-Measurement of Volume and Density 

The volume of the samples was determined using the 

solvent displacement technique with toluene by 

measuring the difference in solvent weight in a 150 

mL flask in the presence and absence of the sample. 

After weighing, the fried samples were placed in the 

flask. The sample volume can be calculated using 

Equation (2). In this equation, V is the sample 

1 2

2 0 oil

W W
M

W W W
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volume (cm³), Vf is the flask volume (cm³), Ms is the 

mass of the solvent (g) added to the flask, and ρs  is 

the solvent density (0.866 g/cm³) [27, 28]. 

                                                                                                                                                    (2) 

 

To estimate the density (ρ) of the samples, Equation 

(3) was used. The mass (m) was considered in grams, 

and the volume (V) in cubic centimeters. The density 

was calculated in g/cm³ [29]. 

                                                                                                                                                                 (3) 

 

2-5-Artificial Neural Network Model Design 

2-5-1 Network Structure 

Figure (1) illustrates the structure of a multilayer 

perceptron (MLP) neural network. Similar to 

previous research [30], this model can be described 

as follows: In the input layer, the input data are 

assigned weights. In the hidden layer, these 

weighted data are summed according to Equation 

(4), and an activation function, based on the inputs, 

produces an output. In this equation, yᵢ is the 

dependent variable, xᵢ is the independent variable, wᵢj 

is the weight of the connection between neuron i and 

neuron j, and bj is the bias connection to neuron j 

[24]. The number of neurons in the hidden layer 

varies from 1 to 25 depending on the error in the 

output layer, while the number of layers’ ranges 

from 1 to 3. All data were divided into three groups: 

training dataset, testing dataset, and validation 

dataset. 

                                                                                                                                   

(4) 

 

 

 

 

 

2-5-2-Network Design 

Similar to the study by researchers [31], a multilayer 

perceptron (MLP) neural network was designed 

using the dedicated toolbox in MATLAB 2018a to 

accurately predict the studied variables (moisture 

and density). In this research, a three-layer 

backpropagation network was employed, with a 

tangent sigmoid transfer function in the hidden layer 

and a linear transfer function in the output layer. The 

backpropagation algorithms used in this study 

included Levenberg-Marquardt, Gradient descent, 

Gradient descent with adaptive learning rate, 

Gradient descent with momentum, Adaptive 

learning rate backpropagation, and Scaled conjugate 

gradient. For the neural network predicting moisture 

content, the input variables were temperature (°C) 

and time (seconds), while the output variable was 

moisture content (g/g dry matter). For the neural 

network predicting density, the input variables were 

temperature (°C), time (seconds), and moisture 

content (g/g dry matter), while the output variable 

was density (g/cm³). A total of 30 data points (67% 

of the dataset) were used for training, and 15 data 

points (33% of the dataset) were used for testing. 

The total dataset consisted of 45 independent and 

dependent data points. 

2-5-3-Validation 

The performance of the training and testing phases 

in the design of artificial neural networks was 

m

V
 =

( )
1

n

i ij i ji
y f w x b

=
= +
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s

M
V V


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Figure 1- Schematic diagram on the structure of artificial neural networks as multilayer perceptron (MLP) 
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validated by considering the types of training 

algorithms used and the model structure. This 

validation was carried out by calculating the 

coefficient of determination (R²) according to 

Equation (5), the root mean square error (RMSE) 

according to Equation (6), and the mean absolute 

error (MAE) according to Equation (7) [32]. 

In these relations, Oᵢ represents the observed value 

of sample i, Pᵢ is the estimated value for the same 

sample, n is the number of data points, O  is the 

mean of the observed values, and P  is the mean of 

the estimated values. The closer the values of RMSE 

and MAE are to zero, the better the prediction 

performance, indicating that the model has a high 

prediction capability. 

                      (5) 

 

 

                                                                                                                                       

(6) 

 

                                                                          

(7) 

 

 

 

2-5-4-Evaluation of Input Importance in 

Network Design 

The importance of input variables in predicting 

moisture content and density was analyzed using a 

predefined hyperbolic tangent neural network in 

SPSS version 19. The neural network toolbox in 

SPSS generates multiple neural networks in the 

shortest possible time and suggests the optimal 

model, which can be used to assess the significance 

of input variables. In this phase, a total of 54 

independent and dependent data points were used to 

make the network. The required number of data 

points for the training and testing phases was 

determined by the software. The validation of the 

training and testing phases was briefly assessed 

using the sum of squared errors (SSE) and relative 

error (RE), as reported by the software. 

3-Results and Discussion 

3-1 Moisture Changes in the Product During 

Hot Air Frying 

Figure (2) illustrates the changes in shrimp moisture 

content during hot air frying, along with the standard 

deviation of experimental data, as a function of  

 

 

 

 

 

processing time. At the beginning of the frying 

process, the moisture reduction rate is high, and as 

the product loses moisture, the rate of change 

gradually stabilizes. As expected, water evaporation 

occurs more rapidly at higher frying temperatures, 

with the most intense moisture loss occurring during 

the first three minutes of the process. This is due to 

the sudden evaporation of surface-free water. 

During hot air frying, the partial vapor pressure 

difference between the product and the surrounding 

hot air drives water evaporation. This pressure 

difference is highest at the start of the process. These 

observations are consistent with the findings of 

many researchers [33–37]. Similar trends in 

moisture reduction during vacuum frying of shrimp 

have been reported, where higher temperatures 

resulted in greater moisture loss over time [37]. In 

another study on shrimp frying, researchers noted 

that the final moisture content of shrimp is 

influenced by frying medium conditions [38]. 

Additionally, researchers have stated that during 

frying, the rate of moisture loss increases until 

surface drying is complete and then gradually 

decreases [39]. Other studies have confirmed that 

the highest rate of moisture loss occurs during the 

initial stages of frying [26, 40].  
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Figure 2- Changes in shrimp moisture content during hot air frying at different temperatures 
 

 

3-2-Changes in Shrimp Density 

Figure (3) illustrates the changes in shrimp density 

during hot air frying. As shown, shrimp density 

gradually decreased over time. An increase in frying 

temperature further reduced the shrimp density. At 

longer frying durations, the difference in density 

between different temperature conditions became 

more pronounced. Researchers have indicated that 

density is significantly influenced by processing 

variables and tends to decrease during frying due to  

 

water evaporation and the formation of pores. They 

have also reported that frying temperature has a 

negative impact on density; as temperature 

increases, mass transfer phenomena intensify, 

leading to a further reduction in density. 

Consequently, in conditions where mass transfer 

occurs more intensely, lower densities are observed. 

Moreover, in the initial stages of the frying process, 

when mass transfer phenomena are more intense, a 

greater reduction in density was noted [41]. It has 

also been established that water loss due to 

evaporation contributes to density reduction, with a 

steeper decline occurring in the early stages of frying 

[42]. 
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Figure 3- Changes in shrimp density during hot air frying 
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3-3-Artificial Neural Networks Model in 

Moisture Content Prediction 

Table (1) presents the results of moisture modeling 

using an artificial neural network for both the 

training and testing phases separately. As shown, the 

lowest error index values in the testing phase 

correspond to the gradient descent with momentum 

training algorithm. In this case, the model structure 

is 2-16-1, indicating two inputs in the first layer, 16 

neurons in the hidden layer, and one output in the 

third layer. The values of R², RMSE, and MAE for 

this training algorithm in the testing phase are 0.989, 

0.171 (g/g, db), and 0.131 (g/g, db), respectively. To 

validate the accuracy of the model and the selected 

structure (gradient descent with momentum), a 

scatter plot was used for the training phase (Figure 

4-A) and the testing phase (Figure 4-B). In these 

plots, the actual moisture content is plotted against 

the predicted moisture content by the neural 

network. Additionally, the correction coefficient is 

considered by fitting a line on the experimental data 

corresponding to the model data. 

 

Table 1- The results of the training and testing stages of the neural networks for moisture prediction 

Training algorithm 
Model 

structure 

Training stage Testing stage 

R2 
RMSE 

(g/g, db) 

MAE 

(g/g, db) 
R2 

RMSE 

(g/g, db) 

MAE 

(g/g, db) 

Levenberg-Marquardt 1-2-2 0.9891 0.0877 0.0697 0.9720 0.1843 0.1454 

Gradient descent 1-16-2 0.9892 0.0873 0.0682 0.9786 0.1714 0.1319 

Gradient descent with 

adaptive learning rate 
1-2-2 0.9854 0.1017 0.0842 0.9750 0.1758 0.1432 

Gradient descent with 

momentum 
1-16-2 0.9891 0.0878 0.0686 0.9787 0.1711 0.1317 

Adaptive learning rate 

backpropagation 
1-3-2 0.9904 0.0822 0.0583 0.9727 0.1830 0.1456 

Scaled conjugate gradient 1-3-2 0.9909 0.0804 0.0574 0.9725 0.1836 0.1474 

 

 

Figure 4- The actual values of moisture (g/g, db) versus the predicted values by the artificial neural networks in the 

training (A) and test (B) stages 
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Prediction 

Table (2) presents the results of density modeling 
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training and testing phases separately. As shown, the 

lowest error index values in the testing phase 

correspond to the Levenberg-Marquardt training 

algorithm. In this case, the model structure is 3-1-1, 

indicating three inputs in the first layer, one neuron 

in the hidden layer, and one output in the third layer. 

The values of R², RMSE, and MAE for this training 

algorithm in the testing phase are 0.9740, 0.0096 

(g/cm³), and 0.0066 (g/cm³), respectively. To 

validate the accuracy of the model and the selected 

structure (Levenberg-Marquardt), a scatter plot was 

used for the training phase (Figure 5-A) and the 

testing phase (Figure 5-B). In these plots, the actual 

density values are compared against the predicted 

density values by the neural network. Additionally, 

the correction coefficient is considered by fitting a 

line on the experimental data corresponding to the 

model data. 

Table 2- The results of the training and testing stages of the neural networks for density prediction 

Training algorithm 
Model 

structure 

Training stage Testing stage 

R2 
RMSE 

(g/cm3) 

MAE 

(g/cm3) 
R2 

RMSE 

(g/cm3) 

MAE 

(g/cm3) 

Levenberg-Marquardt 1-1-3 0.9356 0.0123 0.0089 0.9740 0.0096 0.0066 

Gradient descent 1-20-3 0.9385 0.0121 0.0090 0.9692 0.0102 0.0071 

Gradient descent with 

adaptive learning rate 
1-1-3 0.9328 0.0126 0.0089 0.9647 0.0107 0.0067 

Gradient descent with 

momentum 
1-20-3 0.9385 0.0121 0.0090 0.9686 0.0102 0.0071 

Adaptive learning rate 

backpropagation 
1-1-3 0.9344 0.0124 0.0089 0.9685 0.0101 0.0066 

Scaled conjugate gradient 1-1-3 0.9354 0.0124 0.0089 0.9728 0.0097 0.0066 

Scaled conjugate gradient 1-1-3 0.9354 0.0124 0.0089 0.9728 0.0097 0.0066 

 

networks in the ) versus the predicted values by the artificial neural 3The actual values of density (g/cm -Figure 5
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3-5-Importance of Input Variables in Moisture 

Prediction 

Figure (6) illustrates the structure of the artificial 

neural network for moisture prediction in shrimp, 

with two variables in the input layer, one hidden 

layer using a hyperbolic tangent function, and one 

variable in the output layer. 72.2% of the data was 

used for the training phase, and 27.8% for the testing 

phase. In the formation of the neural network for 
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moisture prediction, to examine the importance of 

the input variables, precise calculations were 

performed using the SPSS software. The sum of 

squared errors (SSE) and relative error (RE) for the 

training phase were estimated to be 0.18 and 0.009, 

respectively, while for the testing phase, they were 

0.07 and 0.008, which were very satisfactory. 

 

 

 

Figure (7) illustrates the importance of independent 

variables in forming the neural network for 

predicting moisture. The importance of the 

temperature variable was 0.117, while the 

importance of the time variable was 0.883. The 

normalized importance, expressed as a percentage 

(assuming time has 100% importance in predicting 

moisture) was 13.2% for temperature. Similarly, 

researchers have identified frying time as a more 

significant factor in predicting moisture during deep 

frying compared to other input variables [43]. 

 

 

 

3-6-Importance of Network Inputs in Density 

Prediction 

Figure (8) illustrates the structure of the artificial 

neural network for density prediction in shrimp, with 

three variables in the input layer, one hidden layer 

using a hyperbolic tangent function, and one 

variable in the output layer. 77.8% of the data was 

used for the training phase, and 22.2% for the testing 

phase.In the formation of the neural network for 

density prediction, to examine the importance of the 

input variables, precise calculations were performed 

using the SPSS software. The sum of squared errors 

(SSE) and relative error (RE) for the training phase 

were estimated to be 0.161 and 0.008, respectively, 

while for the testing phase, they were 0.14 and 

0.037, which were very satisfactory. 
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Figure 6- Artificial neural network for predicting moisture content of shrimp during hot air frying: input variables: 

temperature and time and output variable: moisture content. 

Figure 7- The importance of independent variables (Temperature “T” and time “t”) in the formation of artificial 

neural network for moisture prediction 
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Figure 8- Artificial neural network for predicting density of shrimp during hot air frying: input variables: 

temperature, time and moisture and output variable: density. 

 

 

Figure (9) illustrates the importance of independent 

variables in forming the neural network for 

predicting density. The importance values for 

moisture, time, and temperature were found to be 

0.588, 0.278, and 0.134, respectively. The critical 

role of moisture in density prediction using artificial 

intelligence was clearly highlighted. The normalized 

importance, expressed as a percentage (assuming 

moisture has 100% importance in predicting 

density) was 47.3% and 22.8% for time and 

temperature, respectively. In line with these 

findings, researchers have emphasized the influence 

of moisture on density in determining optimal 

conditions for fried products. They observed that 

during frying, as temperature and time increase (or 

as the product remains exposed to frying conditions 

for a longer period), moisture evaporates, leading to 

the expansion of pores and product swelling. This 

results in an increase in specific volume and a 

reduction in density [43]. Other studies have also 

linked density variations during processing to the 

intensity of water evaporation and process duration. 

They reported that as evaporation intensifies or the 

process time extends, density decreases. Moreover, 

they noted that at high temperatures, a significant 

drop in moisture content leads to a more pronounced 

reduction in density, further underscoring the 

importance of moisture in density estimation [28]. 

Researchers have previously achieved promising 

results using similar models to predict quality 

attributes and process variables. The development of 

fuzzy systems for predicting the quality attributes 

and sensory characteristics of hot-air fried products, 

as well as the simulation of models for process 

automation, further highlights the significance of 

these findings for future research [45, 46].  
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Figure 9- The importance of independent variables (Temperature”T”, time “t” and Moisture ”M”) in the formation 

of artificial neural network for density prediction 
 

 

4-Conclusion 

In this study, an artificial neural networks (ANN) 

model was developed to predict changes in moisture 

content and density of shrimp during hot air frying. 

At the beginning of the frying process, due to the 

partial vapor pressure difference between the 

product and the hot air, and the sudden release of 

surface-free water, intense evaporation was 

observed. As moisture content decreased and pores 

developed in the shrimp, the product density also 

gradually declined during hot air frying, with higher 

processing temperatures leading to a more 

significant density reduction. The ANN model 

effectively predicted these quality characteristics. 

Process time was found to be more influential than 

temperature in the predictive model for moisture 

content. In predicting density, moisture content had 

the highest importance, followed by time and 

temperature. Until now, the quantitative impact of 

various factors on moisture and density prediction 

had not been fully explored. The findings of this 

study can assist producers in estimating and 

analyzing shrimp yield loss. In the application of any 

novel food processing method, understanding key 

process parameters affecting product quality can 

help specialists improve process control. Future 

research should focus on intelligent modeling of the 

hot air frying process, aiming to design and develop 

automated industrial-scale equipment tailored to 

other quality attributes, such as color. 
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 مصنوعی  عصبی هایشبکه  داغ با مدل  کردن هوایمیگو طی سرخ در   دانسیته و رطوبت بینیپیش

 

 5یلق ی   د یسع، 4یحسن صباغ، 3یمحمد قربان، *2رف یائیامان محمد ض، 1بهاره معروف پور

، گرگان، ایران  گرگان یعی و منابع طب یعلوم کشاورز دانشگاهیی، غذا عیصنا   یعلوم و مهندسدانشجوی دکتری  1  

، گرگان، ایران گرگان یعیو منابع طب  یعلوم کشاورز دانشگاهاستاد گروه مهندسی صنایع غذایی،  *2  

 ران یگرگان، گرگان، ا یعیو منابع طب  یدانشگاه علوم کشاورزاستاد گروه شیمی مواد غذایی،  3

 مجتمع آموزش عالی تربت جام، خراسان رضوی، ایران دامپروری،  استادیار گروه علوم و مهندسی مواد غذایی، دانشکده کشاورزی و4

   استادیار گروه شیلات، مرکز تحقیقات شیلات استان گلستان، گرگان، ایران5

 دهیچک اطلاعات مقاله                        

 مقاله :   یخ هایتار
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بینی تغییرات رطوبت و دانسبیته میگو طی ( برای پیشANNهای عصببی مصبنوعی  در این پژوهش، شببکه

دقیقه( ارائه  15  به مدت  گرادسببانتی  درجه  180 و 160  ،140  دمای سببه کردن هوای داغ  درفرآیند سببر 

  یه  در سبیگموئید  تانژانت  انتقال تابع  ( باMLPهای عصببی به صبورت پرسبپترون  ند  یه  شببکهگردید. 

بینی رطوبت  با دو ورودی: دما و زمان( و دانسبببیته  با برای پیش  خروجی   یه  در  خطی  انتقال تابع  و  پنهان

  انتشببار های مختلف پسالگوریتمطراحی شببد.   MATLABسببه ورودی: دما، زمان و رطوبت( در نرم افزار  

نزولی با نر  تطبیقی یادگیری، انتشببار برگشببتی با نر    یانمارکوارت، گرادیان نزولی، گراد-لونبرگشببام   

  محاسبببه  با  هامدل بودند. سبباختارشببده  نزولی با مومنتم وگرادیان مزدوج مقیاس یانیادگیری متغییر، گراد

  . ( اعتبار سنجی شد MAEمطلق    خطای  میانگین ( وRMSEخطا    مربعات  میانگین (، ریشه2Rتبیین    ضبری 

بینی رطوببت و دانسبببیتبه ببا طراحی  هبا از نرر تباریر بر متغیر خروجی برای پیشاهمیبت ورودیدر نهبایبت،  

 بررسبی گردید. نتای  نشبان داد که با   SPSSهای عصببی پیش فر  تانژانت هایپربولی  در نرم افزار  شببکه

 کاهش  تدری   به داغ  هوای کردنسببر   طی نیز  محصببول  دانسببیته  میگو،  در  منافذ  توسببعه و  رطوبت کاهش

در مدل رطوبت، الگوریتم پس انتشار . شد مشاهده  دانسیته  در  بیشتری کاهش  فرآیند  دمای  افزایش با  و یافت

- لونبرگالگوریتم ( و در مدل دانسببیته، RMSE=0.171, MAE=0.1312R ,0.989=   نزولی با مومنتم یانگراد

نشببان دادند. در در آموزش ( کمترین میزان خطا را RMSE=0.0096, MAE=0.00662R ,0.974=  ارکوارتم

  بود. در محاسبببات  117/0و   883/0برابر با    زمان و دما به ترتی محاسبببات عصبببی رطوبت، اهمیت متغیر  

بود. از  134/0و   278/0،  588/0دانسبببیتبه نیز اهمیبت متغیر رطوببت، زمبان و دمبا ببه ترتیب  برابر ببا    عصببببی

های هوای داغ کنهای این پژوهش در طراحی هوش مصبنوعی برای کنترل و ایجاد اتوماسبیون در سبر یافته

 توان استفاده کرد.می

 : یدیکلمات کل

 های عصبی مصنوعی،شبکه

 رطوبت،

 دانسیته،

 میگو،

 سر  کردن هوای داغ.  
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